

A Linear/Non-Linear Model for Classical Linear Logic Jennifer Paykin and Steve Zdancewic, University of Pennsylvania

Linear Logic (LL)

...except for exponential (non-linear) resources.

Linear/Non-Linear Models

Benton (1995) introduced a model of intuitionistic LL (ILL) that propositions !A. The model partitions ! into two components:

As a type theory, this linear/non-linear partition can be used to separate regular λ -calculus terms from linear terms.

Generalizing to Classical Linear Logic

adds nontrivial structure in the form of the duality operator.

Α	A⊥
A⊗B	A [⊥] % B [⊥]
1	
A&B	$A^{\perp} \oplus B^{\perp}$
Т	0
!A	?A [⊥]

linear implication, the prominent role.

Propositions

 $A,B \coloneqq 1 \mid A \otimes B$

Producers $P,Q \coloneqq 1 \mid P \otimes Q$

Duality is defined as a m

Two Sequent Cal

Linear $\Gamma \vdash \Delta$ Contexts range ov

Travel between the linea adjunctions $F_{-} \rightarrow [-], [-]$

> ┎╹╟ $\Gamma^{P} \vdash \Delta^{c}, F, P$

Embedding ! and

The regular promotion r

include:

- Possibilities include vector manipulation over finite fields, like
- Extending other models of intuitionistic LL to the classical case • Exploring connections between linear logic and linear algebra. cryptography.
- Construct a term language for the LPC logic with a well-defined equational model. Prove soundness of the categorical model with respect to terms.

References

1987.

Acknowledgements

LPC Logic

Linear terms $\bot A \otimes B 0 A \oplus B \top A \otimes B F_P F_C$			
[A]	Consume C,D ≔⊥ C⅋	ers D [A]	
neta-operation based on De Morgan's laws.			
culi, One Logic			
	Persistent		
	$\Gamma \Vdash \Delta$	$\Gamma \Vdash \Delta$	
ver A,P,C	Contexts range	over P,C	
ar and persistent worlds by means of the \neg F ₂ .			
⊢ Δ ^с ,Α	$\Gamma^{P}, A \vdash \Delta^{C}$	Γ ^ℙ ,C ⊩ Δ ^ϲ	
- Δ ^c ,[A]	Γ ^ℙ ,[Α] ⊩ Δ ^c	$\Gamma^{P}, F_{2}C \vdash \Delta^{C}$	
?			
ules for linear logic are admissible in LPC.			
⊢Δ ^c ,A		$\Gamma^{P}, A \vdash \Delta^{C}$	
- Δ ^c ,[A]	$\frac{\Gamma, A \vdash \Delta}{\Box} = -$	► Γ ^ℙ ,[Α] ⊩ Δ ^c	
$\Delta^{c},F[A]$	$I^{,?}A \vdash \Delta^{,}$	$\Gamma^{P}, F_{2}[A] \vdash \Delta^{C}$	

Future Work

We have defined a logic and categorical model for the linear/non-linear paradigm extended to classical linear logic. Possible extensions

N Benton. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models. Proceedings of CSL '94, Kazimierz, Poland. Springer-Verlag LNCS 933. June 1995. Girard, Jean-Yves. Linear logic, Theoretical Computer Science, Vol 50, no 1, pp. 1–102,