
choose Your Own Derivative
(Extended Abstract)

Jennifer Paykin Antal Spector-Zabusky Kenneth Foner
University of Pennsylvania

{jpaykin,antals,kfoner}@seas.upenn.edu

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features

Keywords selective choice; derivatives; concurrency; Haskell

1. Introduction
Synchronization is the hardest part of concurrent program-
ming. In this extended abstract we discuss a generalization
of the synchronization mechanism selective choice. As envi-
sioned by Reppy [4], selective choice takes a list of events,
executes them concurrently, and returns the value of the first
event to complete. We argue that selective choice can be
extended to synchronize arbitrary data structures of events,
based on a typing paradigm introduced by McBride [3]: the
derivatives of recursive data types. We discuss our work in
progress on implementing generalized selective choice as a
Haskell library based on generic programming.

Selective choice. Consider implementing a Haskell func-
tion timeout time evt that takes an IO action evt and runs
it for at most time microseconds. This function can be im-
plemented in terms of the primitive threadDelay :: Int ->
IO () by executing evt and threadDelay time concurrently
and recording which one finishes first. The concurrency is
provided by a function chooseEither :: IO a -> IO b ->
IO (Either a b) (similar to waitEither in the Haskell
Async library [2]).

timeout :: Int -> IO a -> IO (Maybe a)
timeout time evt = do

x <- chooseEither evt (threadDelay time)
case x of Left a -> pure $ Just a

Right () -> pure Nothing

The chooseEither function is an instance of a more
general mechanism called selective choice, which is a pattern
for executing some number of events concurrently and
recording which one happens first. Frequently, selective choice
comes in the form chooseAny :: [IO a] -> IO a, returning
the value of the first IO action in a list to trigger. However,

[Copyright notice will appear here once ’preprint’ option is removed.]

chooseAny does not indicate which choice was made; to find
that out we might prefer an operation chooseList of type

[IO a] -> IO ([IO a], a, [IO a])

that returns not only the aforementioned value, but also the
remaining IO actions in the list.

We can extend this idea even further by focusing on the
context of an arbitrary data structure. For example, consider
an abortable IO action: a pair of a threaded IO action along
with its thread ID.

type Abort a = (ThreadId, IO a)
abort :: Abort a -> IO ()

We can define a selective choice operator chooseAbort that
waits for the first IO action in a list of Abort a values:

[Abort a] -> IO ([Abort a],(ThreadId,a),[Abort a])

Using chooseAbort we can easily implement a function that
aborts all of the IO actions that were not chosen:

runUntilFirst :: [Abort a] -> IO a
runUntilFirst ls = do

(prev, (tid,a), post) <- chooseAbort ls
mapM_ abort (prev ++ post)
putStrLn (show tid ++ " completed!")
return a

In the rest of this document we describe how to generalize
the type of chooseEither, chooseList, and chooseAbort
into a single type-directed function choose. The result type
of choose is based on the derivative of the input type, in the
sense of McBride’s one-hole contexts [3].

2. Derivatives and One-Hole Contexts
The choose function takes a data structure, which may
contain arbitrary IO actions to be run concurrently, and
selects a single action inside that structure – specifically, the
next action to complete.

For example, choose over a disjunction of two actions,
Either (IO a) (IO b), is just an action returning a disjunc-
tion of results, IO (Either a b). On the other hand, choose
over a pair of actions, (IO a, IO b), produces a more com-
plicated action of type IO (Either (a, IO b) (IO a, b)).
Here, either the IO a action completed and the IO b is still in
progress (the (a, IO b) case), or vice versa (the (IO a, b)
case). For both sums and products, the result type of choose
is reminiscent of the sum and product rules for the derivative
operation in calculus. This is easiest to see in a more type-
theoretic notation: writing + for Either, × for (,), and �

1 2016/6/24



∂x x = 1 ∂x �t = 0
∂α y = 0 ∂� �t = t

∂α 0 = 0 ∂α(s+ t) = ∂α s+ ∂α t

∂α 1 = 0 ∂α(s× t) = ∂α s× t+ s× ∂α t

∂x(µx. t) = 0
∂α(µy. t) = µz.

(
∂α t

∣∣ y = µy. t
)

+
(
∂y t

∣∣ y = µy. t
)
× z

Figure 1. The derivative of a regular type with respect to α,
which is either a type variable (x) or an event (�).

for IO, we have
choose : (�A+ �B)→ �(A+B)
choose : (�A× �B)→ �

(
(A× �B) + (�A×B)

)
McBride [3] defines a derivative operation ∂x on types,

where x is a type variable, and shows that it gives the type of
one-hole contexts for any regular data type1. Here, x specifies
the type of values that fill the hole.

In our setting, the analogous derivative ∂� produces the
type of one-hole contexts with holes for events, or equivalently
IO actions. This means that the derivative of an event �A
(or equivalently IO a) is just its result type A. The hole
is filled with the time the event occurred. This operation
is heterogeneous in the sense that events in the same data
structure may have different result types (such as �A× �B).

The two derivative operations, ∂x and ∂�, are defined
together in Fig. 1.

3. Selective Choice
In general, the type of choose is given by

choose :: Generic a => a -> IO (∂ IO a)
where ∂ IO is a Haskell type family corresponding to ∂� and
Generic is a pre-defined type class that allows type-directed
programming. The intended semantics is that choose a is
an event that triggers when any event inside of a does. Using
choose minimizes the need for the user to deal with low-level
concurrency primitives; the only place synchronization is
needed is in the implementation of choose.

The implementation is based on a helper function
locations that finds all the events inside its argument.
It returns a list containing, for each event e in the argument,
an event that triggers when e does and that returns the
corresponding one-hole context.

locations :: Generic a => a -> [IO (∂ IO a)]
We implement choose using lower-level synchronization
primitives (in this case, GHC’s MVars) to determine which of
these one-hole contexts triggered first.2 The implementation
also uses a helper function spawnall :: a -> IO a that
spawns a new thread for every IO action in its argument and
allows these threads to execute concurrently. The bulk of the
effort in implementing choose goes into defining locations.

choose :: Generic a => a -> IO (∂ IO a)

1 A possibly-recursive type composed only of sums and products.
2 Note that the type signatures and code presented are simplified
to illustrate the main idea; the real implementation includes details
about efficiency and more complicated typing features.

choose v = do
win <- newEmptyMVar
v' <- spawnall v
threads <- forM (locations v') $ \result ->

forkIO $ putMVar win =<< result
readMVar win

3.1 Implementation (Work In Progress)
We currently have an in-progress Haskell implementa-
tion of choose, available at https://github.com/antalsz/
choose-your-own-derivative. This implementation makes
extensive use of advanced GHC type-level programming
features, including: GHC.Generics, to perform structural
analysis on types; data type promotion, for basic dependently-
typed programming; type families, or type-level functions,
including ∂ IO; GADTs; explicit type application; and reified
constraints. These allow us to state and prove the theorems
that ensure values of type ∂ IO A are well-formed.

3.2 Extensions
The locations function mentioned above does not depend
on any details of IO in particular. In fact, the rules in Fig. 1
are independent of the semantics of �. As part of ongoing
work, we plan to generalize the behavior of locations and
choose to other monads, including:
1. Other concurrency monads. Haskell has a rich library

ecosystem, and choose does not inherently depend on the
specifics of IO.

2. Signals or events in graphical user interface libraries.
For example, in Gtk2Hs [5], choose could act as a
signal combinator for forwarding messages (“signals”)
throughout a DOM tree of widgets.

3. Parser combinators. Here, choose p would apply the first
successful parser in p, and return both the result of that
parse and the remaining parsers. This allows, for example,
parsing unordered lists of tokens.

4. Random generators, as in QuickCheck [1]. Here, choose g
would nondeterministically generate an element from one
of the component generators of g.

Acknowledgments
This work was supported by NSF GRFP no. DGE-1321851,
NSF award no. 1521523, and NSF award no. 1319880.

References
[1] Koen Claessen and John Hughes. QuickCheck: a lightweight

tool for random testing of Haskell programs. In 5th ACM SIG-
PLAN International Conference on Functional Programming
(ICFP), pages 268–279. ACM, 2000.

[2] Simon Marlow. async: Run IO operations asynchronously and
wait for their results. http://hackage.haskell.org/package/
async-2.1.0, January 2016.

[3] Conor McBride. The derivative of a regular type is its type of
one-hole contexts. Extended Abstract, 2001.

[4] John H. Reppy. Concurrent Programming in ML. Cambridge
University Press, 1999.

[5] Axel Simon, Duncan Coutts, et al. gtk: Binding to the Gtk+
graphical user interface library. http://hackage.haskell.org/
package/gtk-0.14.5, June 2016.

2 2016/6/24

https://github.com/antalsz/choose-your-own-derivative
https://github.com/antalsz/choose-your-own-derivative
http://hackage.haskell.org/package/async-2.1.0
http://hackage.haskell.org/package/async-2.1.0
http://hackage.haskell.org/package/gtk-0.14.5
http://hackage.haskell.org/package/gtk-0.14.5

	Introduction
	Derivatives and One-Hole Contexts
	Selective Choice
	Implementation (Work In Progress)
	Extensions


