
Submitted to:
LINEARITY 2014

A Linear/Producer/Consumer Model of Classical Linear
Logic

Jennifer Paykin Steve Zdancewic
University of Pennsylvania

Philadelphia, USA
jpaykin@seas.upenn.edu stevez@cis.upenn.edu

This paper defines a new proof- and category-theoretic framework for classical linear logic that sep-
arates reasoning into one linear regime and two persistent regimes corresponding to ! and ?. The
resulting linear/producer/consumer (LPC) logic puts the three classes of propositions on the same
semantic footing, following Benton’s linear/non-linear formulation of intuitionistic linear logic. Se-
mantically, LPC corresponds to a system of three categories connected by adjunctions reflecting the
linear/producer/consumer structure. The paper’s metatheoretic results include admissibility theorems
for the cut and duality rules, and a translation of the LPC logic into category theory. The work also
presents several concrete instances of the LPC model.

1 Introduction

LP >
G

F

Figure 1: Categorical model of ILL
with linear and persistent categories.

Since its introduction by Girard in 1987, linear logic has been
found to have a range of applications in logic, proof theory, and
programming languages. Its power stems from its ability to care-
fully manage resource usage: it makes a crucial distinction be-
tween linear (used exactly once) and persistent (unrestricted use)
hypotheses, internalizing the latter via the ! connective. From a
semantic point of view, the literature has converged (following
Benton [3]) on an interpretation of ! as a comonad given by ! = F ◦G where F a G is a symmetric
monoidal adjunction between categories L and P arranged as shown in Figure 1.

Here, L (for “linear”) is a symmetric monoidal closed category and P (for “persistent”) is a cartesian
category. This is, by now, a standard way of interpreting intuitionistic linear logic (for details, see
Melliès [14]). If, in addition, the category L is ∗-autonomous, the structure above is sufficient to interpret
classical linear logic, where the monad ? is determined by ? = (Fop (Gop (−⊥)))⊥. While sound, this
situation unnecessarily commits to a particular implementation of ? in term of Pop. The LPC framework
absolves us of this commitment by opening up a new range of semantic models, discussed in Section 4.

With that motivation, this paper defines a proof- and category-theoretic framework for full classical
linear logic that uses two persistent categories: one corresponding to ! and one to ?. The resulting
categorical structure is shown in Figure 2, where P takes the place of the “producing” category, in
duality with C as the “consuming” category. This terminology comes from the observations that:

!A ` 1 ⊥ ` ?A
!A ` A A ` ?A

!A ` !A⊗ !A ?A` ?A ` ?A

Intuitively, the left group means that !A is sufficient to produce any number of copies of A and, dually,
the right group says that ?A can consume any number of copies of A.

2 An LPC Model of Classical Linear Logic

2 LPC Logic

L

P C

a ad−e b−c

F! F?

(−)⊥

(−)∗

(−)∗

Figure 2: Categorical model of classical lin-
ear logic with linear, producing and consuming
categories.

The syntax of the LPC logic is made up of three syntac-
tic forms for propositions: linear propositions A, pro-
ducer propositions P, and consumer propositions C.

A ::= > | A1 & A2 | 0 | A1⊕A2
| 1L | A1⊗A2 | ⊥L | A1 `A2
| F! P | F? C

P ::= 1P | P1⊗P2 | dAe
C ::= ⊥C | C1 `C2 | bAc

The syntactic form of a proposition is called its mode—
linear L, producing P or consuming C. The meta-
variable X ranges over propositions of any mode, and
the tagged meta-variable Xm ranges over propositions
of mode m. The term persistent refers to either pro-
ducer or consumer propositions.

LPC replaces the usual constructors ! and ? with two pairs of connectives: F! and d−e for ! and F?
and b−c for ?. If A is a linear proposition, dAe is a producer and bAc is a consumer. On the other hand, a
producer proposition P may be “frozen” into a linear proposition F! P, effectively discarding its persistent
characteristics. Similarly for a consumer C, F? C is linear. The linear propositions !A and ?A are encoded
in this system as F! (dAe) and F? (bAc) respectively.

The inference rules of the logic are shown in Figures 3 and 4. There are two judgments: the linear se-
quent Γ ` ∆ and the persistent sequent Γ ∆. In the linear sequent, the (unordered) contexts Γ and ∆ may
be made up of propositions of any mode; in the persistent sequent, the contexts may contain only per-
sistent propositions. The meta-variable ΓP refers to contexts made up entirely of producer propositions,
and ∆C refers to contexts of consumer propositions.

The linear inference rules in Figures 3 and 4a encompass rules for the units and the linear operators
⊕, &, ⊗ and `. It is worth noting that the multiplicative product ⊗ is defined only on linear and producer
propositions, while the multiplicative sum ` is defined only on linear and consumer propositions.1

Weakening and contraction can be applied for producers on the left-hand-side and consumers on the
right-hand-side of both the linear and persistent sequents. For producers, that is:

Γ ` ∆

Γ,P ` ∆
W`-L

Γ ∆

Γ,P ∆
W-L

Γ,P,P ` ∆

Γ,P ` ∆
C`-L

Γ,P,P ∆

Γ,P ∆
C-L

The rules for the operators F!, F?, d−e and b−c are given in Figure 4b. These rules encode dereliction
and promotion for ! and ? by passing through the adjunction. For example:

Γ,A ` ∆

Γ, !A ` ∆ ⇒

Γ,A ` ∆

Γ,dAe ` ∆

Γ,F! dAe ` ∆

Γ
! ` ∆

?,A

Γ
! ` ∆

?, !A ⇒

Γ
P ` ∆

C,A

Γ
P ∆

C,dAe
Γ
P ` ∆

C,F! dAe

Displacement. The commas on the left-hand-side of both the linear and persistent sequents intuitively
correspond to the ⊗ operator, and the commas on the right correspond to `. This correspondence mo-
tivates the context restriction in the rules that move between the linear and persistent regimes. The

1The persistent operators in this paper are necessary for LPC, but in general are not restricted to the sum and product. Other
operators, like→ or ∨, could be incorporated so long as every producer operator has a dual for consumers.

J. Paykin & S. Zdancewic 3

X ` X
AX`

Γ ` ∆,>
>`L -R

Γ,0 ` ∆
0`L -L

Γ,A ` ∆

Γ,A & B ` ∆
&`L -L1

Γ,B ` ∆

Γ,A & B ` ∆
&`L -L2

Γ ` ∆,A
Γ ` ∆,A⊕B

⊕`L -R1
Γ ` ∆,B

Γ ` ∆,A⊕B
⊕`L -R2

Γ ` ∆,A Γ ` ∆,B
Γ ` ∆,A & B

&`L -R
Γ,A ` ∆ Γ,B ` ∆

Γ,A⊕B ` ∆
⊕`L -L

Γ,X1
m,X2

m ` ∆ m ∈ {L,P}
Γ,(X1⊗X2)m ` ∆

⊗`-L
Γ1 ` ∆1,X1

m
Γ2 ` ∆2,X2

m m ∈ {L,P}
Γ1,Γ2 ` ∆1,∆2,(X1⊗X2)m

⊗`-R

Γ ` ∆ m ∈ {L,P}
Γ,1m ` ∆

1`-L
m ∈ {L,P}
· ` 1m

1`-R

Γ1,X1
m ` ∆1 Γ2,X2

m ` ∆2 m ∈ {L,C}
Γ1,Γ2,(X1 `X2)m ` ∆1,∆2

``-L
Γ ` ∆,X1

m,X2
m m ∈ {L,C}

Γ ` ∆,(X1 `X2)m
``-R

m ∈ {L,C}
⊥m ` ·

⊥`-L
Γ ` ∆ m ∈ {L,C}

Γ ` ∆,⊥m
⊥`-R

Figure 3: Inference Rules for Linear Sequent

restriction ensures that almost all of the propositions have the “natural” mode—producers on the left and
consumers on the right. We say “almost” because the principal formula in each of these rules defies this
classification. We call such propositions displaced.

Definition 1. In a derivation of Γ ∆, a producer P is displaced if it appears in ∆. A consumer C is
displaced if it appears in Γ.

Proposition 2 (Displacement). Every derivation of Γ ∆ contains exactly one displaced proposition.

Proof. By induction on the derivation.

Cut. The cut rules are presented in Figure 4c. The rules with persistent cut terms have the following
property: whenever the cut term is displaced in a subderivation, that derivation must be persistent and
satisfy the restrictions of Proposition 2. Lacking this restriction, simpler formulations of the cut rules
disallow cut admissibility.

To show admissibility of the CUT rules, it is sufficient to show admissibility of an equivalent set of
rules called CUT+. The versions differ in their treatment of persistent cut terms. The CUT+ formulation
uses the observation that when a persistent proposition is not displaced in a sequent, it can be replicated
any number of times. Let (X)n be n copies of a proposition X. It is easy to see that the following
propositions are admissible in the linear sequent (and similarly for the persistent sequent):

Γ,(P)n ` ∆

Γ,P ` ∆

Γ ` ∆,(C)n

Γ ` ∆,C

4 An LPC Model of Classical Linear Logic

P P
AXP C C

AXC

Γ,P1,P2 ∆

Γ,P1⊗P2 ∆
⊗P -L

Γ1 ∆1,P1 Γ2 ∆2,P2

Γ1,Γ2 ∆1,∆2,P1⊗P2
⊗P -R

Γ ∆

Γ,1P ∆
1P -L

· 1P
1P -R

Γ1,C1 ∆1 Γ2,C2 ∆2

Γ1,Γ2,C1 `C2 ∆1,∆2
`C -L

Γ ∆,C1,C2

Γ ∆,C1 `C2
`C -R

⊥C ·
⊥C -L

Γ ∆

Γ ∆,⊥C
⊥C -R

(a) Inference Rules for Persistent Sequent

Γ,P ` ∆

Γ,F! P ` ∆
F!-L

ΓP ∆C,P
ΓP ` ∆C,F! P

F!-R

ΓP,C ∆C

ΓP,F? C ` ∆C
F?-L

Γ ` ∆,C
Γ ` ∆,F? C

F?-R

Γ,A ` ∆

Γ,dAe ` ∆
d−e-L

ΓP ` ∆C,A
ΓP ∆C,dAe

d−e-R

ΓP,A ` ∆C

ΓP,bAc ∆C
b−c-L

Γ ` ∆,A
Γ ` ∆,bAc

b−c-R

(b) Adjunction Inference Rules

Γ1 ` ∆1,A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
CUT`L

ΓP
1 ∆C

1 ,P P,Γ2 ` ∆2

ΓP
1 ,Γ2 ` ∆C

1 ,∆2
CUT`P

ΓP
1 ∆C

1 ,P P,Γ2 ∆2

ΓP
1 ,Γ2 ∆C

1 ,∆2
CUTP

Γ1 ` ∆1,C C,ΓP
2 ∆C

2

Γ1,ΓP
2 ` ∆1,∆C

2
CUT`C

Γ1 ∆1,C C,ΓP
2 ∆C

2

Γ1,ΓP
2 ∆1,∆C

2
CUTC

(c) CUT Inference Rules

Figure 4: Persistent and Auxiliary Inference Rules

Thus the CUT+ rules, given below, are equivalent to the CUT rules.

Γ1 ` ∆1,A A,Γ2 ` ∆2

Γ1,Γ2 ` ∆1,∆2
CUT+`L

ΓP
1 ∆C

1 ,P (P)n,Γ2 ` ∆2

ΓP
1 ,Γ2 ` ∆C

1 ,∆2
CUT+`P

ΓP
1 ∆C

1 ,P (P)n,Γ2 ∆2

ΓP
1 ,Γ2 ∆C

1 ,∆2
CUT+P

Γ1 ` ∆1,(C)n C,ΓP
2 ∆C

2

Γ1,ΓP
2 ` ∆1,∆C

2
CUT+`C

Γ1 ∆1,(C)n C,ΓP
2 ∆C

2

Γ1,ΓP
2 ∆1,∆C

2
CUT+C

Lemma 3 (CUT+ Admissibility). The CUT+ rules are admissible in LPC.

Proof. Let D1 and D2 be the hypotheses of one of the cut rules. The proof is by induction on the cut
term primarily and the sum of the depths of D1 and D2 secondly.

1. Suppose D1 or D2 ends in a weakening or contraction rule on the
cut term. In particular, consider the weakening case where the cut term
is a producer and D2 is a linear judgment. In this case D1 is a deriva-
tion of ΓP

1 ∆C
1 ,P and D2 is the derivation shown to the right. By the

inductive hypothesis on P, D1 and D′2, there exists a cut-free derivation
of ΓP

1 ,Γ2 ` ∆C
1 ,∆2.

D2 =

D′2
Γ2,(P)n ` ∆2

Γ2,(P)n+1 ` ∆2
W-L

J. Paykin & S. Zdancewic 5

2. If D1 or D2 is an axiom, the case is trivial.
3. Suppose the cut term is the principle formula in both D1 and D2 (excluding weakening and con-

traction rules). We consider a few of the subcases here:

(⊗L)

D1 =

D11

Γ11 ` ∆11,A1

D12

Γ12 ` ∆12,A2

Γ11,Γ12 ` ∆11,∆12,A1⊗A2
⊗`L -R

and D2 =

D′2
Γ2,A1,A2 ` ∆2

Γ2,A1⊗A2 ` ∆2
⊗`L -L

By the inductive hypothesis on A2, D12 and D′2, there exists a derivation E of Γ12,Γ2,A1 ` ∆12,∆2.
Then the desired derivation of Γ11,Γ12,Γ2 ` ∆11,∆12,∆2 exists by the inductive hypothesis on A1, D11
and E .

(⊗P)

D1 =

D11

Γ
P
11 ∆

C
11,P1

D12

Γ
P
12 ∆

C
12,P2

Γ
P
11,Γ

P
12 ∆

C
11,∆

C
12,P1⊗P2

⊗P -R
and D2 =

D′2
Γ2,(P1⊗P2)n,P1,P2 ` ∆2

Γ2,(P1⊗P2)n+1 ` ∆2
⊗`P-L

The inductive hypothesis on P1⊗P2, D1 itself and D′2 gives us a derivation E of

Γ
P
11,Γ

P
12,Γ2,P1,P2 ` ∆

C
11,∆

C
12,∆2.

Multiple applications of the inductive hypothesis give the following derivation:

D11

Γ
P
11 ∆

C
11,P1

D12

Γ
P
12 ∆

C
12,P2

E
Γ
P
11,Γ

P
12,Γ2,P1,P2 ` ∆

C
11,∆

C
12,∆2

Γ
P
12,Γ

P
11,Γ

P
12,Γ2,P1 ` ∆

C
12,∆

C
11,∆

C
12,∆2

IH(P2)

Γ
P
11,Γ

P
12,Γ

P
11,Γ

P
12,Γ2 ` ∆

C
11,∆

C
12,∆

C
11,∆

C
12,∆2

IH(P1)

Because the replicated contexts are made up exclusively of non-displaced propositions, it is possible to
apply contraction multiple times to obtain the desired sequent.

(F!)

D1 =

D′1
Γ
P
1 ∆

C
1 ,P

Γ
P
1 ` ∆

C
1 ,F! P

F!-R
and D2 =

D′2
Γ2,P ` ∆

Γ2,F! P ` ∆
F!-L

Because D′1 is a persistent derivation, we can apply the inductive hypothesis for P with n = 1 to ob-
tain the desired derivation.

4. Suppose the cut term is not the principle formula in D1 or D2. Most of the subcases are straight-
forward in that the last rule in the derivation commutes with the inductive hypotheses.
If the cut term is a producer, then D1 is a persistent judgment so it cannot be the case that the last rule
of D1 is an F! rule or a d−e-L or b−c-R rule. But it also cannot be the case that the last rule in D1 is a
d−e-R or b−c-L rule because there is a non-principle formula—namely, the cut formula—which is in a
displaced position in the derivation.
Suppose on the other hand that the cut term is a consumer and D1
is the derivation to the right. Then D2 is a derivation of ΓP

2 ,C ∆C
2 .

By the inductive hypothesis on C,D′1 andD2, there is a derivation E
of ΓP

1 ,Γ
P
2 ` ∆C

1 ,A,∆
C
2 . Because the contexts inD2 were undisplaced,

it is possible to apply the d−e-R rule to E to obtain a derivation of
ΓP

1 ,Γ
P
2 ∆C

1 ,dAe,∆C
2 .

D1 =

D′1
Γ
P
1 ` ∆

C
1 ,A,(C)n

Γ
P
1 ∆

C
1 ,dAe,(C)n

d−e-R

For the full proof of Lemma 3, see the accompanying technical report [15].

Theorem 4 (CUT Admissibility). The CUT rules in Figure 4c are admissible in LPC.

6 An LPC Model of Classical Linear Logic

Duality. Every rule in the LPC inference rules has a clear dual, but unlike standard presentations of
classical linear logic, LPC does not contain an explicit duality operator (−)⊥, nor a linear implication
(with which to encode duality. Instead, we define (−)⊥ to be a meta-operation on propositions and
prove that the following duality rules are admissible in LPC:

Γ ` ∆,A
Γ,A⊥ ` ∆

(−)⊥-L
Γ,A ` ∆

Γ ` ∆,A⊥
(−)⊥-R

In fact, there are three versions of this duality operation: (−)⊥ for linear propositions, (−)∗ for producers
and (−)∗ for consumers. For a linear proposition A, A⊥ is linear, but for a producer P, P∗ is a consumer,
and for a consumer C, C∗ is a producer. We define these (invertible) duality operations as follows:

>⊥ := 0

(A & B)⊥ := A⊥⊕B⊥
1⊥L :=⊥L

(A⊗B)⊥ := A⊥`B⊥
1∗P :=⊥C

(P⊗Q)∗ := P∗`Q∗
(F! P)⊥ := F? P∗

dAe∗ := bA⊥c

Γ ` ∆,A
Γ,A⊥ ` ∆

(−)⊥-L

Γ ` ∆,P
Γ,P∗ ` ∆

(−)∗`-L
Γ ` ∆,C
Γ,C∗ ` ∆

(−)∗`-L

Γ ∆,P
Γ,P∗ ∆

(−)∗-L
Γ ∆,C
Γ,C∗ ∆

(−)∗-L

Figure 5: Left Duality Inference Rules

We will show that the inference rules given in Fig-
ure 5 (as well as the respective right rules) are admissi-
ble in LPC.

Lemma 5. The following axioms hold in LPC:

A,A⊥ ` · · ` A,A⊥ P,P∗ · · P,P∗

Proof. By mutual induction on the proposition.

The variations P,P∗ ` · and · ` P,P∗ on the other
hand cannot be proved by induction because of the sub-
case P = dAe; there is no way to apply the inductive
hypothesis to the goal dAe,bA⊥c ` ·. However we can
construct the desired derivations using cut rules:

P∗ ` P∗ P,P∗ ·
P,P∗ ` ·

· P,P∗ P ` P

· ` P,P∗

Theorem 6. The duality rules in Figure 5 are admissible in LPC.

Proof. Three of the rules can be generated by a straightforward application of cut:

Γ ` ∆,A A,A⊥ ` ·
Γ,A⊥ ` ∆

CUT`L
Γ ` ∆,C C,C∗ ·

Γ,C∗ ` ∆
CUT`C

Γ ∆,C C,C∗ ·
Γ,C∗ ∆

CUTC

When we try to do the same for the left producer rules, the context restriction around the displaced cut
term leads to the following derivations:

Γ
P ∆

C,P P,P∗ ·
Γ
P,P∗ ∆

C
CUTP

Γ
P ∆

C,P P,P∗ ` ·
Γ
P,P∗ ` ∆

C
CUT`P

For the first of these, recall that due to displacement, every derivation of Γ,P∗ ∆ in fact has the restric-
tion that Γ = ΓP and ∆ = ∆C. So this derivation is actually equivalent to the one in Figure 5. The second
derivation, on the other hand, is not equivalent to the one in Figure 5, nor an acceptable variant. The

J. Paykin & S. Zdancewic 7

hypothesis and conclusion of the derivation are different kinds of sequents, and linear propositions are
completely excluded from the contexts.

Instead we can prove the more general form of the rule directly: For any derivation D of Γ ` ∆,P,
there is a derivation of Γ,P∗ ` ∆. We prove this by induction on D. Most of the cases commute directly
with the inductive hypothesis, which the following exception: If D is the axiom P ` P then there is a
derivation of P,P∗ ` ·, as expected.

Consistency. Define the negation of a linear proposition to be ¬A := A⊥`0.

Theorem 7 (Consistency). There is no proposition A such that A and ¬A are both provable in LPC.

Proof. Suppose there were such an A, along with derivations D1 of · ` A
and D2 of · ` A⊥ ` 0. Then there exists a derivation of · ` 0 as seen to
the right. However, there is no cut-free proof of · ` 0 in LPC, which
contradicts cut admissibility.

D2

· ` A⊥,0

D1

· ` A

A⊥ ` ·
(−)⊥-L

· ` 0
CUT`L

3 Categorical Model

In this section we describe a categorical axiomatization of LPC based on the three-category Figure 2.
Certain definitions have been omitted for brevity; these can be found in the companion paper [15].

Preliminaries. We start with some basic definitions about symmetric monoidal structures.

Definition 8. A symmetric monoidal category is a category C equipped with a bifunctor ⊗, an object 1,
and the following natural isomorphisms:

αA1,A2,A3 : A1⊗ (A2⊗A3)→ (A1⊗A2)⊗A3

σA,B : A⊗B→ B⊗A

λA : 1⊗A→ A

ρA : A⊗1→ A

These must satisfy the following coherence conditions:

A1⊗ (A2⊗ (A3⊗A4))
αA1⊗A2 ,A3 ,A4

◦αA1 ,A2 ,A3⊗A4−−−−−−−−−−−−−−−→ ((A1⊗A2)⊗A3)⊗A4
αA1 ,A2 ,A3

−1⊗idA4−−−−−−−−−−→ (A1⊗ (A2⊗A3))⊗A4

= A1⊗ (A2⊗ (A3⊗A4))
idA1⊗αA2 ,A3 ,A4−−−−−−−−→ A1⊗ ((A2⊗A3)⊗A4)

αA1 ,A2⊗A3,A4−−−−−−−→ (A1⊗ (A2⊗A3))⊗A4 (1)

idA⊗λB = A⊗ (1⊗B)
αA,1,B−−−→ (A⊗1)⊗B

ρA⊗idB−−−−→ A⊗B (2)

A1⊗ (A2⊗A3)
idA1⊗σA2 ,A3−−−−−−−→ A1⊗ (A3⊗A2)

αA1,A3 ,A2−−−−−→ (A1⊗A3)⊗A2
σA1 ,A3⊗idA2−−−−−−−→ (A3⊗A1)⊗A2

= A1⊗ (A2⊗A3)
αA1 ,A2 ,A3−−−−−→ (A1⊗A2)⊗A3

σA1⊗A2 ,A3−−−−−−→ A3⊗ (A1⊗A2)
αA3 ,A1 ,A2−−−−−→ (A3⊗A1)⊗A2 (3)

idA⊗B = A⊗B
σA,B−−→ B⊗A

σB,A−−→ A⊗B (4)

λA = 1L⊗A
σ1L ,A−−−→ A⊗1L

ρA−→ A (5)

8 An LPC Model of Classical Linear Logic

Definition 9. Let (C,⊗,1,α,λ ,ρ,σ) and (C′,⊗′,1′,α ′,λ ′,ρ ′,σ ′) be symmetric monoidal categories. A
symmetric monoidal functor F : C ⇒ C′ is a functor along with a map mF

1 : 1′→ F1 and a natural
transformation mF

A,B : F(A)⊗′ F(B)→ F(A⊗B) that satisfies the following coherence conditions:

(F(A1)⊗′ F(A2))⊗′ F(A3)

F(A1⊗A2)⊗′ F(A3)

mF
A1,A2

⊗′ id

F((A1⊗A2)⊗A3)

mF
A1⊗A2,A3

F(A1)⊗′ (F(A2)⊗′ F(A3))
α ′

F(A1)⊗′ F(A2⊗A3)

id⊗′mF
A2,A3

F(A1⊗ (A2⊗A3))

mF
A1,A2⊗A3

F(α)

F(A)⊗′ F(B) F(B)⊗′ F(A)
σ ′

F(A⊗B)

mF
A,B

F(B⊗A)
F(σ)

mF
B,A

1′⊗′ F(A) F(A)
λ ′

F(1)⊗′ F(A)

mF
1 ⊗
′ id

F(1⊗A)
mF

1,A

F(λA)

F(A)⊗′ 1′ F(A)
ρ ′

F(A)⊗′ F(1)

id⊗′mF
1

F(A⊗1)
mF

A,1

F(ρ)

A functor F : C ⇒ C′ is symmetric comonoidal if it is equipped with a map nF
1 : F1→ 1′ and natural

transformation nF
A,B : F(A⊗B)→ F(A)⊗′ F(B) such that the appropriate (dual) diagrams commute.

Definition 10. Let F and G be symmetric monoidal functors F,G : C ⇒ C′. A monoidal natural transfor-
mation τ : F→ G is a natural transformation satisfying

τA⊗B ◦ mF
A,B = mG

A,B ◦ (τA⊗
′
τB) and τ1L ◦ mF

1 = mG
1 .

For F and G symmetric comonoidal functors, a natural transformation τ : F→ G is comonoidal if it
satisfies the appropriate dual diagrams.

Definition 11. A symmetric (co-)monoidal adjunction is an adjunction F a G between symmetric (co-)
monoidal functors F and G where the unit and counit of the adjunction are symmetric (co-)monoidal
natural transformations.

The LPC model. Traditionally the multiplicative fragment of linear logic is modeled by a *-autonomous
category. For LPC, we use an equivalent notion that puts the tensor ⊗ and co-tensor ` on equal footing,
by modeling the category L as a symmetric linearly distributive category with negation [5].

Definition 12. Let L be a category with two symmetric monoidal structures ⊗ and `, and a natural
transformation

δA1,A2,A3 : A1⊗ (A2 `A3)→ (A1⊗A2)`A3

Then L is a symmetric linearly distributive category if δ satisfies a number of coherence conditions
described by Cockett and Seely [5].
L is said to have negation if there exists a map (−)⊥ on objects of L and families of maps

γ
⊥
A : A⊥⊗A→⊥L and γ

1
A : 1L→ A`A⊥

commuting with δ in certain ways.

Theorem 13 (Cockett and Seely). Symmetric linearly distributive categories with negation correspond
to *-autonomous categories.

J. Paykin & S. Zdancewic 9

Definition 14. A linear/producing/consuming (LPC) model consists of the following components:

1. A symmetric linearly distributive category (L,⊗,`) with negation (−)⊥, finite products & and
finite coproducts ⊕.

2. Symmetric monoidal categories (P,⊗) and (C,`) in duality by means of contravariant functors
(−)∗ : P ⇒ C and (−)∗ : C ⇒ P , where (−)∗ is monoidal and (−)∗ is comonoidal, with natural
isomorphisms

ε
∗
∗C : (C∗)∗→ C and η

∗
∗P : P→ (P∗)∗.

3. Monoidal natural transformations e⊗P : P→ 1P and d⊗P : P→ P⊗P in P and comonoidal natural
transformations eC̀ :⊥C→ C and dC̀ : C`C→ C in C, interchanged under duality, such that:

(a) for every P, (P,d⊗P ,e⊗P) forms a commutative comonoid in P; and
(b) for every C, (C,dC̀ ,eC̀) forms a commutative monoid in C.

4. Symmetric monoidal functors d−e : L⇒ P and F! : P ⇒ L and symmetric comonoidal functors
b−c :L⇒C and F? : C ⇒L, which respect the dualities in that (F! P)⊥ ' F? (P∗) and dAe ' bA⊥c,
and that form monoidal/comonoidal adjunctions d−e a F! and F? a b−c.

To unpack condition (3), consider the definition of a commutative comonoid:

Definition 15. Let (P,⊗,1P) be a symmetric monoidal category. A commutative comonoid in P is
an object P in P along with two morphisms e⊗ : P→ 1P and d⊗ : P→ P⊗P that commute with the
symmetric monoidal structure of P . Dually, a commutative monoid in a symmetric monoidal category
(C,`,⊥C) is an object C along with morphisms e` :⊥C→ C and d` : C`C→ C.

The commutative comonoids inP ensure that all propositions are duplicable in the producer category.
This property is then preserved by the exponential decomposition F!, leading to the property that linear
propositions of the form !A = F! dAe are similarly duplicable.

Because d−e a F! forms a monoidal adjunction, F! is necessarily a strong monoidal functor [11],
which implies that F! is both monoidal and comonoidal. A similar result can be stated for F?.

LPC and other linear logic models. As LPC is inspired by Benton’s linear/non-linear paradigm, this
section formalizes the relationship between LPC, LNL, and single-category models of linear logic.

Definition 16 (Melliès [13]). A linear/non-linear (LNL) model consists of: (1) a symmetric monoidal
closed category L; (2) a cartesian category P; and (3) functors G : L⇒ P and F : P ⇒ L that form a
symmetric monoidal adjunction F a G.2

In LPC, because every object in P forms a commutative comonoid, P is cartesian [8]. Therefore:

Proposition 17. Every LPC model is an LNL model.

In addition, a *-autonomous category in a linear/non-linear model induces an LPC triple:

Proposition 18. If the category L in an LNL model is *-autonomous, then (L,P,Pop) is an LPC model.

Next we prove that every LPC model contains a classical linear category as defined by Schalk [17].
This definition is just the extension of Benton et al’s linear category [2] to classical linear logic.

Definition 19 (Schalk [17]). A category L is a model for classical linear logic if and only if it: (1) is
*-autonomous; (2) has finite products & and thus finite coproducts ⊕; and (3) has a linear exponential
comonad ! and thus a linear exponential monad ?.

2The LNL model given by Benton [3] has the added stipulation that the cartesian category be cartesian closed, but other
works have since disregarded this condition.

10 An LPC Model of Classical Linear Logic

Proposition 20. The category L from the LPC model is a model for classical linear logic.

Proof. From Theorem 13 we know that L is *-autonomous, and by construction it has finite products
and coproducts. Because the LPC model is also an LNL model, we may apply Benton’s proof that every
LNL model has a linear exponential comonad [3].

Proposition 21. Every model for classical linear logic forms an LPC category.

Proof. Benton proved that every SMCC with a linear exponential comonad has an LNL model. Because
the linear category is *-autonomous the LNL model induces an LPC model.

Interpretation of the Logic. We define an interpretation of the LPC logic that maps propositions
to objects in the categories, and derivations to morphisms. For objects, the J−KL interpretation func-
tion maps any mode of proposition into the linear category. The interpretation of linear propositions is
straightforward, and for persistent propositions we define

JPKL = F! JPKP JCKL = F? JCKC.

The functions J−KP and J−KC map propositions into the producer and the consumer categories P and C
respectively, but they are defined only on the persistent propositions. To map producer propositions into
the consumer category and vice versa, we define

JCKP = (JCKC)∗ JPKC = (JPKP)∗.

Linear contexts are interpreted as a single proposition in the linear category. The comma is repre-
sented by the tensor connector ⊗ if the context is meant to appear on the left-hand-side of a sequent, and
by the cotensor ` if the context is meant to appear on the right. These interpretations of linear contexts
are represented as JΓK⊗L and J∆KL̀ respectively. In the producer category there is no cotensor and vice
versa for the consumer category, so JΓPKP interprets the comma as the tensor in the producer category,
and JΓCKC interprets the comma as the cotensor in the consumer category.

In this way a linear derivation D of the form Γ ` ∆ will be interpreted as a morphism JDKL : JΓK⊗L →
J∆KL̀ . However, it is not clear in which category we should interpret a persistent sequent of the form
Γ ∆, since Γ and ∆ may contain both producer and consumer propositions. Recall Proposition 2, which
states that every such derivation D contains exactly one displaced proposition. This means that D is
either of the form ΓP ∆C,P or ΓP,C ∆C. In the category P , this derivation will be interpreted as a
morphism

JDKP : JΓ
PKP⊗ J∆

CKP→ JPKP or JDKP : JΓ
PKP⊗ J∆

CKP→ JCKP,

respectively. In the same way every derivation can be interpreted as a morphism in C.
The interpretation is defined by mutual induction on the derivations.

1. The interpretation of the linear inference rules given in Figure 3 as well as the persistent rules in
Figure 4a are straightforward from the categorical structures.

2. The interpretation of weakening and contraction rules is defined using the
monoid in C and comonoid in P . For weakening in the linear sequent,
suppose D is the derivation to the right. The interpretation of D inserts
the comonoidal component e⊗ in P into the linear category: D =

D′

Γ ` ∆

Γ,P ` ∆
W`-L

JDKL : JΓK⊗L ⊗F! JPKP
JD′KL⊗F! e⊗−−−−−−−→ J∆KL̀ ⊗F! 1P

id⊗nF!
−−−−→ J∆KL̀ ⊗1L

ρ⊗−−→ J∆KL̀

J. Paykin & S. Zdancewic 11

3. If the last rule in the derivation is an F!-L or F?-R rule, its interpretation
is just the interpretation of its subderivation. On the other hand, if the last
rule is the right F! rule, the inductive hypothesis states that there exists
a morphism JD′KP : JΓPKP ⊗ J∆CKP→ JPKP. It is necessary to undo this
duality transformation for interpretation in the linear category.

D =

D′

Γ
P ∆

C,P

Γ
P ` ∆

C,F! P
F!-R

Notice that for any persistent context Γ, there is an isomorphism π : JΓK⊗L ∼= F! JΓKP given by the
monoidal components of F!. Furthermore, there is an isomorphism τ between (J∆KL̀)

⊥ and F! J∆KP
given by the isomorphism (F? C)⊥ ∼= F! C∗. Using π and τ we define the interpretation of D:

JDKL : JΓPK⊗L
ρ⊗;(id⊗γ1)−−−−−−−→ JΓPK⊗L ⊗ ((J∆CKL̀)⊥` J∆CKL̀)

π⊗(τ`id)−−−−−−→ F! JΓPKP⊗ (F! J∆CKP` J∆CKL̀)
δ−→ (F! JΓPKP⊗F! J∆CKP)` J∆CKL̀

mF!`id−−−−→ F! (JΓPKP⊗ J∆CKP)` J∆CKL̀
F! JD′KP`id−−−−−−−→ F! JPKP` J∆CKL̀

σ`−−→ J∆CKL̀ ` JF! PKL

4. Suppose the last rule in D is the left d−e rule. The interpretation of D
should be a morphism from JΓK⊗L ⊗F! (dJAKLe) to J∆KL̀ ; we use the unit
of the adjunction, ε : F! dAe → A to cancel out the exponentials.

JDKL : JΓK⊗L ⊗F! (dJAKLe)
id⊗ε−−−→ JΓK⊗L ⊗ JAKL

JD′KL−−−→ J∆KL̀
Similarly, the d−e-R rule uses the counit of the adjunction, along with
the isomorphisms π and τ defined previously. If the last rule in D is the
d−e-R rule, its interpretation is defined as follows:

D =

D′

Γ,A ` ∆

Γ,dAe ` ∆
d−e-L

D =

D′

Γ
P ` ∆

C,A

Γ
P ∆

C,dAe
d−e-R

JDKP : JΓPKP⊗ J∆CKP
η⊗η−−−→ dF! JΓPKPe⊗ dF! J∆CKPe

md−e−−−→ dF! JΓPKP⊗F! J∆CKPe
dπ−1⊗τ−1e−−−−−−−→ dJΓPK⊗L ⊗ (J∆CKL̀)⊥e dJD′KL⊗ide−−−−−−−→ d(J∆CKL̀ ` JAKL)⊗ (J∆CKL̀)⊥e
dδe−−→ d(J∆CKL̀ ⊗ (J∆CKL̀)⊥)` JAKLe

γ⊥`id;dλ`e−−−−−−−−→ dJAKLe= JdAeKP

4 Examples

This section provides some concrete instances of the LPC model. The following chart summarizes the
three examples and their LPC categories. L P C

Vectors FINVECT FINSET FINSETop

Relations REL SET SETop

Bool. Alg. FINBOOLALG FINPOSET FINLAT

Vector Spaces. Linear logic shares many features with linear algebra, based on the natural interpreta-
tions of the tensor product and duality of vector spaces. To construct an LPC model, letL be the category
of finite-dimensional vector spaces over a finite field F, P be the category of finite sets and functions,
and C be the opposite category of P .

The ⊗ operator of linear logic is easily interpreted as the tensor product in L. The ` operator has no
natural interpretation in terms of vector spaces, but we may define U `V := U⊗V . The units 1L and ⊥L

may be any one-dimensional vector space; for concreteness let them be generated by the basis {1}.

12 An LPC Model of Classical Linear Logic

The free vector space Free(X) of a finite set X over F is the vector space with vectors the formal
sums α1x1+ · · ·+αnxn, addition defined pointwise, and scalar multiplication defined by distribution over
the xi’s. A basis for Free(X) is the set {δx | x ∈ X} where δx is the free sum x.

The dual of a vector space V (with basis B) over F is the set V⊥ of linear maps from V to F. For any
vector v ∈ V , we can define v ∈ V⊥ to be the linear map acting on basis elements x ∈ B by

v[x] =

{
1 x = v
0 x 6= v

Addition and scalar multiplication are defined pointwise. Then {x | x ∈ B} is a basis for V⊥.
The additives & and ⊕ are embodied by the notions of the direct product and direct sum, which in the

case of finite-dimensional vector spaces, coincide.

Lemma 22. The category FINVECT is a symmetric linearly distributive category with negation, prod-
ucts, and coproducts.

Proof. Since ⊗ and ` overlap, the distributivity transformation δ is simply associativity. The coherence
diagrams for linear distribution then depend on the commutativity of tensor, associativity, and swap
morphisms. To show the category has negation, we define γ⊥A : A⊥ ⊗A→ ⊥ and γ1

A : 1→ A`A⊥ as
follows, where B is a basis for A:

γ
⊥
A (δu⊗ v) = δu[v] ·1 γ

1
A (1) = ∑

v∈B
v⊗ v

It then suffices to check that λ ◦ (γ⊥⊗ id) ◦ α ◦ (id⊗λ) = ρ.

We will present only the adjunction between FINVECT and the producing category FINSET; the other
can be inferred from the opposite category. Define d−e : FINVECT⇒ FINSET to be the forgetful functor,
which takes a vector space to its underlying set of vectors. It is a monoidal functor with components
md−e1 : 1P→ d1e and md−eA,B : dAe × dBe → dA⊗Be defined by

md−e1L (/0) = 1 and md−eA,B (u,v) = u⊗ v

On objects, the functor F! : FINSET⇒ FINVECT takes a set X to the free vector space generated by
X . For a morphism f : X1→ X2 in FINSET, we define F! f : Free(X1)→ Free(X2) to be F! f (δx) = δf (x).

Then F! is monoidal with components mF!
1 : 1→ F! 1P and mF!

X1,X2
: F! X1⊗F! X2→ F! (X1 × X2) defined as

mF!
1L (1) = δ /0 mF!

X1,X2
(δx1 ⊗δx2) = δ(x1,x2)

Lemma 23. The functors d−e and F! form a symmetric monoidal adjunction d−e a F!.

Proof. We define the unit εA : F! dAe → A and counit ηP : P→ dF! Pe of the adjunction as follows:

εA (δv) = v ηP (x) = δx

It is easy to check that ε and η form an adjunction, and are both monoidal natural transformations.

Corollary 24. FINVECT, FINSET, and FINSETop together form an LPC model.

Linear algebra has been considered as a model for linear logic multiple times in the literature.
Ehrhard [7] presents finiteness spaces, where the objects are spaces of vectors with finite support. In
his model, the ! operator sends a space A to the space supported by finite multisets over A; it takes
some effort to show that this comonad respects the finiteness conditions. Pratt [16] proves that finite

J. Paykin & S. Zdancewic 13

dimensional vector spaces over a field of characteristic 2 is a Chu space and thus a model of linear logic.
Valiron and Zdancewic [19] show that the LPC model of FINVECT is a sound and complete semantic
model for an algebraic λ -calculus.

Relations. Let REL be the category of sets and relations, and let SET be the category of sets and
functions. (Notice that the sets in either category here may be infinite, unlike in the FINVECT case.) It is
easy to see that REL is linearly distributive where the tensor and the cotensor are both cartesian product,
and distributivity is just associativity. The unit is a singleton set, and negation on REL is the identity
operation.

SET is cartesian and its opposite category SETop, cocartesian. The F! and F? functors are the forgetful
functors which interpret a function as a relation. The d−e functor takes a set to its powerset. Suppose R
is a relation between A and B. The function dRe : dAe → dBe is defined as

dRe(X) = {y ∈ B | ∃x ∈ X ,(x,y) ∈ R}.

Then d−e has monoidal components md−e1 : 1P→ d1Le and md−eA,B : dAe × dBe → dA × Be defined by

md−e1L (/0) = /0 md−eA,B (X1,X2) = X1 × X2

The dual notion b−c is just the inverse.
Melliés [13] discusses a non-model of linear logic based on REL, where the exponential takes a set

X to the finite subsets of X . That “model” fails because the comonad unit εA : !A→ A is not natural. In
the LPC formulation, ε is derived from the adjunction, ensuring naturality.

Boolean Algebras. Next we consider an example of the LPC categories where P and C are related by
a non-trivial duality. The relationship is based on Birkhoff’s representation theorem [4], which can be
interpreted as a duality between the categories of finite partial orders and order-preserving maps (P) on
the one hand, and finite distributive lattices with bounded lattice homomorphisms (C) on the other hand.

The linear categoryL is the category of finite boolean algebras with bounded lattice homomorphisms.
For the monoidal structure, the units are both the singleton lattice { /0}, and the tensors A⊗B and A`B
are the boolean algebra with base set A × B and lattice structure as follows:

⊥= (⊥,⊥)
(x1,y1)∨ (x2,y2) = (x1∨ x2,y1∨ y2)

>= (>,>)
(x1,y1)∧ (x2,y2) = (x1∧ x2,y1∧ y2)

¬(x,y) = (¬x,¬y)

Given a partially ordered set (P,≤), a subset X ⊆ P is called lower if it is downwards closed with
respect to ≤. The set of all lower sets of P forms a lattice with > = P, ⊥L = /0, meet as union and join
and intersection. Let P∗ refer to this lattice.

Meanwhile, given a lattice C, an element x is join-irreducible if x is neither ⊥L nor the join of any
two elements less than x. That is, x 6= y∨ z for y,z 6= x. Let C∗ be the partially ordered set with base set
the join-irreducible elements of C, with the ordering x≤ y iff x = y∧ x.

The operators (−)∗ and (−)∗ extend to functors that form a duality between P and C [18].
The monoidal structure on P is given by the cartesian product with the ordering (x1,y1) ≤ (x2,y2)

iff x1 ≤ x2 and y1 ≤ y2. The unit is the singleton order { /0}. It is easy to check that every poset has a
communitive comonoid.

Finite distributive lattices have a monoidal structure with the unit the singleton lattice { /0} and the
tensor C1`C2 the lattice where the base set is C1 ×C2. For every lattice C in C there exists a commutative

14 An LPC Model of Classical Linear Logic

monoid with components eC̀ :⊥C→ C and dC̀ : C`C→ C as follows:

eC̀ (/0) =⊥ dC̀ (x,y) = x∧ y

The components of the monoid in C and the comonoid in P are interchanged under the Birkhoff duality.
Next we define the symmetric monoidal functors. Define d−e : L ⇒ P and b−c : L ⇒ C to be

forgetful functors. For d−e in particular, the order induced by the boolean algebra is x≤ y iff x = y∧ x.
Define F! and F? to be the powerset algebra, which takes a structure with base set X to the boolean

algebra with base set X, with top, bottom, join, meet and negation corresponding to X, /0, union, intersec-
tion and complementation respectively. On morphisms, define

F! f (X) = F? f (X) = {f (x) | x ∈ X}.

It is easy to check that these functors respect the dualities in that (F! P)⊥ ' F? P∗ and dAe∗ ' bA⊥c.
To prove F! a d−e, it suffices to show a bijection of homomorphism sets Hom(F! P,A) ∼= Hom(P,dAe).
Suppose f : F! P→ A in L. Then define f] : P→ dAe by

f] (x) = f ({z ∈ X | z≤ x})

This morphism is in fact order-preserving. Next, for g : P→ dAe define g[: F! P→ A as follows:

g[(X) =
∨
x∈X

g(x)

Again g[is a lattice homomorphism. It remains to check that (f])[= f and (g[)] = g.
From these definitions, the unit εA : F! dAe → A and counit ηP : P→ dF! Pe of the adjunction are

εA (X) = id[dAe (X) =
∨
x∈X

iddAe (x) =
∨

X ηP (x) = (idF! P)
] (x) = {z | z≤ x}

To show the adjunction is monoidal, it suffices to prove ε and η are monoidal natural transformations.
The proof of the comonoidal adjunction b−c a F? is similar.

5 Related work

Girard [9] first introduced linear logic to mix the constructivity of intuitionistic propositional logic with
the duality of classical logic. Partly because of this constructivity, there has been great interest in the
semantics of linear logic in both the classical and intuitionistic fragments. Consequently, there exist
several categorical frameworks for its semantic models.

One influential framework is Benton et al.’s linear category [2], consisting of a symmetric monoidal
closed category with products and a linear exponential comonad !. Schalk [17] adapted linear categories
to the classical case by requiring that the symmetric monoidal closed category be *-autonomous. The
coproduct ` and coexponential ? are then induced from the duality.

Cockett and Seely [5], seeking to study ⊗ and ` as independent structures unobscured by duality,
introduced linearly distributive categories, which make up the linear category in the LPC model. The
authors extended this motivation to the exponentials by modeling ! and ? as linear functors [6], meaning
that ? is not derived from ! and (−)⊥. The LPC model reflects that work by allowing ! and ? to have
different adjoint decompositions.

Other variations of classical linear logic, notably Girard’s Logic of Unity [10], distinguish linear
propositions from persistent ones. In the intuitionistic case, Benton [3] developed the linear/non-linear
logic and categorical model described in Section 3. Barber used this model as the semantics for a term
calculus called DILL [1]. A Lafont category [12] is a canonical instance of an LNL model where !A is

J. Paykin & S. Zdancewic 15

the free commutative comonoid generated by A. This construction automatically admits an adjunction
between between a linear category L and the category of commutative comonoids over L. However, the
LNL and LPC models have an advantage over Lafont categories by allowing a much greater range of
interpretations for the exponential. Lafont’s construction excludes traditional models of linear logic like
coherence spaces and the category REL.

Acknowledgments. The authors thank Benoı̂t Valiron, Paul-André Melliès, and Marco Gaboardi for
their insights during discussions about this work. This material is based in part upon work supported by
the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1321851 and by
NSF Grant No. CCF-1421193.

References
[1] Andrew Barber (1996): Dual intuitionistic linear logic. Technical Report.
[2] Nick Benton, G. M. Bierman, J. Martin E. Hyland & Valeria de Paiva (1993): A term calculus for intuitionistic

linear logic. In: Proceedings of the International Conference on Typed Lambda Calculi and Applications,
Springer-Verlag LNCS 664, pp. 75–90.

[3] P. N. Benton (1995): A mixed linear and non-linear logic: proofs, terms and models. In: Proceedings of
Computer Science Logic, Kazimierz, Poland., Springer-Verlag, pp. 121–135.

[4] Garrett Birkhoff (1937): Rings of sets. Duke Mathematical Journal 3(3), pp. 443–454.
[5] J.R.B. Cockett & R.A.G. Seely (1997): Weakly distributive categories. Journal of Pure and Applied Algebra

114(2), pp. 133 – 173.
[6] J.R.B. Cockett & R.A.G. Seely (1999): Linearly distributive functors. Journal of Pure and Applied Algebra

143(13), pp. 155 – 203.
[7] Thomas Ehrhard (2005): Finiteness spaces. Mathematical Structures in Computer Science 15(4), pp. 615–

646.
[8] Thomas Fox (1976): Coalgebras and cartesian categories. Communications in Algebra 4(7), pp. 665–667.
[9] Jean-Yves Girard (1987): Linear logic. Theoretical computer science 50(1), pp. 1–101.

[10] Jean-Yves Girard (1993): On the unity of logic. Annals of pure and applied logic 59(3), pp. 201–217.
[11] G Max Kelly (1974): Doctrinal adjunction. In: Category Seminar, Springer, pp. 257–280.
[12] Yves Lafont (1988): The linear abstract machine. Theoretical Computer Science 59, pp. 157–180. Correc-

tions in vol. 62, pp. 327–328.
[13] Paul André Melliés (2003): Categorical models of linear logic revisited.
[14] Paul-André Melliès (2009): Categorical semantics of linear logic. Panoramas et Syntheses 27.
[15] Jennifer Paykin & Steve Zdancewic (2014): A linear/producer/consumer model of classical linear logic.

Technical Report MS-CIS-14-03, University of Pennsylvania.
[16] V.R. Pratt (1994): Chu spaces: complementarity and uncertainty in rational mechanics. Course notes,

TEMPUS summer school, Budapest.
[17] Andrea Schalk (2004): Whats is a categorical model of linear logic. Technical Report, University of Manch-

ester.
[18] Richard P Stanley (2011): Enumerative combinatorics. 49, Cambridge University Press.
[19] Benoı̂t Valiron & Steve Zdancewic (2014): Finite vector spaces as a model of simply-typed lambda-calculi.

	Introduction
	 LPC Logic
	Categorical Model
	Examples
	Related work

