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Common quantum algorithms make heavy use of ancillae, scratch qubits that initialized at some state
and later returned to that state and discarded. Existing quantum circuit languages allow programmers
to assert that a qubit has been returned to the ∣0⟩ state before it is discarded, allowing for a range
of optimizations. However, existing languages cannot verify these assertions, which introduces a
potential source of errors. In this paper, we present methods for verifying that ancillae are discarded
in the desired state, and use these methods to implement a verified compiler from classical functions
to quantum oracles.

1 Introduction

Many quantum algorithms rely heavily on quantum oracles, classical programs executed inside quantum
circuits. Toffoli proved that any classical, boolean-valued function f (x) can be implemented as a unitary
circuit fu satisfying fu(x,z) = (x,z⊕ f (x)) [15]. Toffoli’s construction for quantum oracles is used in
many quantum algorithms, such as the modular arithmetic of Shor’s algorithm [12]. As a concrete
example, Figure 1 shows quantum circuits that implement the boolean functions and (∧) and or (∨).

Unfortunately, Toffoli’s construction introduces significant overhead. Consider a circuit meant to
compute the boolean formula (a∨b)∧(c∨d). The circuit needs two additional scratch wires, or ancillae,
to carry the outputs of (a∨b) and (c∨d), as seen in Figure 2. The annotation 0 at the start of a wire
means that qubit is initialized in the state ∣0⟩. When constructed in this naive way, the resulting circuit
no longer corresponds to a unitary transformation, and cannot be safely used in a larger quantum circuit.

The solution is to uncompute the intermediate values a∨b and c∨d and then discard them at the end
of the quantum circuit (Figure 3). The annotation 0 at the end of a wire is an assertion that the qubit at
that point is in the zero state, at which point we can safely discard it without affecting the remainder of
the state.

How can we verify that such an assertion is actually true? We cannot dynamically check the assertion,
since we can only access the value of a qubit by measuring it, collapsing the qubit in question to a 0 or
1 state. However, we can statically reason that the qubit must be in the state ∣0⟩ by analyzing the circuit
semantics.

a ● a
b ● b
z z⊕(a∧b)

a ● a

b ● b

z z⊕(a∨b)

Figure 1: Quantum oracles implementing the boolean ∧ and ∨. The ⊕ gates represent negation, and ●
represents control.
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a ● a

b ● b

0 ● (a∨b)
c ● c

d ● d

0 ● (c∨d)
z z⊕((a∨b)∧(c∨d))

Figure 2: An non-unitary quantum oracle for (a∨b)∧(c∨d)

a ● ● a

b ● ● b

0 ● 0

c ● ● c

d ● ● d

0 ● 0

z z⊕((a∨b)∧(c∨d))

Figure 3: A unitary quantum oracle for (a∨b)∧(c∨d) with ancillae

The claim that a qubit is in the 0 state is a semantic assertion about the behavior of the circuit. Unfor-
tunately, this makes it hard to verify—computing the semantics of a quantum program is computationally
intractable in general. Circuit programming languages often allow users to make such assertions, but not
to verify that they are true. For example, Quipper [6] allows programmers to make assertions about the
state of ancillae, but these assertions are never checked. The QCL quantum circuit language [7] provides
a built-in method for creating reversible circuits from classical functions, but the programmer must trust
this method to safely manage ancillae. The REV ERC compiler [1] for the (non-quantum) reversible com-
puting language REVS [8] provides a similar method, and verifies that it correctly uncomputes its ancilla.
However, other assertions in REVS that a wire is correctly in the 0 state are ignored if they cannot be
automatically verified.

In this paper, we develop verification techniques safely working with ancillae. Our approach allows
the programmer to discard qubits that are in the state ∣0⟩ or ∣1⟩ provided she first formally proves that
the qubits are in the state specified. Inspired by the REV ERC compiler [1], we also provide syntactic
conditions that the programmer may satisfy to guarantee that her assertions are true. However, our
quantum circuits do not need to match this syntactic specification: a programmer may instead manually
prove that her circuit safely discards qubits using the denotational semantics of the language. This gives
the programmer the flexibility to use ancillae where the proof of such assertions are non-trivial.
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We develop these techniques in the context of QWIRE (as in “require”), a domain-specific program-
ming language for describing and reasoning about quantum circuits [9]. QWIRE is implemented as a
embedded language inside the Coq proof assistant [3], which allows us to formally verify properties of
our circuits. These properties can range from coarse-grained (“this circuit corresponds to a unitary trans-
formation”) to precise (“this teleport circuit is equal to the identity”) [11]. QWIRE is an ongoing project
and available for public use at https://github.com/jpaykin/QWIRE.

This paper reports on work-in-progress that makes the following contributions:1

• We extend QWIRE with assertion-bearing ancillae.

• We give semantic conditions for the closely related properties of (a) when a circuit is reversible,
and (b) when a circuit contains only valid assertions about its ancillae.

• We provide syntactic conditions that guarantee the correctness of these assertions for common
use-cases.

• We implement a compiler to transform boolean expressions into reversible QWIRE circuits , and
prove its correctness.

• We show how this compilation can be used perform quantum arithmetic via a quantum adder.

2 The QWIRE Circuit Language

QWIRE [9] is a small quantum circuit language designed to be embedded in a larger, functional pro-
gramming language. We have implemented QWIRE in the Coq proof assistant, which provides access
to dependent types and the Coq interactive proof system. We use these features to type check QWIRE

circuits and verify properties about their semantics [11]. In this section we give a brief introduction to
the syntax and semantics of QWIRE, including the new ancilla assertions.

A QWIRE circuit consists of a sequence of gate applications terminated with some output wires.
Circuit W ::= output p | gate p' ← g p ; Circuit W

The parameter W refers to a wire type: Bit, Qubit or some tuple of Bits and Qubits (including the
empty tuple One). A pattern of wires, denoted p, can be a bit-valued wire bit v, a qubit-valued wire
qubit v, a pair of wires (p1,p2) or an empty tuple (). Gates g are either unitary gates U, drawn from a
universal gate set, or members of a small set of non-unitary gates:

W := Bit | Qubit | One | W ⊗ W

g := U | init_0 | init_1 | meas | discard | assert_0 | assert_1

The init and meas gates initialize and measure qubits, respectively; meas results in a bit, which can be
discarded by the discard bit or used as a control. The assert_0 and assert_1 gates take a qubit as input
and discard it, provided that it is in the state ∣0⟩ or ∣1⟩ respectively. We will discuss the semantics of these
gates, and how to verify assertions, in Sections 3 and 4.

As an example, the following QWIRE circuit prepares a Bell state:

gate p1 ← init_0 ();

gate p2 ← init_0 ();

gate p1 ← H p1;

gate (p1, p2) ← CNOT (p1, p2);

output (p1,p2)

0 H ●

0

1Section 7 elaborates on the state of the Coq development that underlies this work.

https://github.com/jpaykin/QWIRE
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QWIRE also includes some more powerful functionality for constructing circuits. Circuits can be
composed via a let binding let_ p ← C; C', where the output of the first circuit C is plugged into the wires
p in C'. It’s worth highlighting two useful instances of composition: The inSeq (;;) function takes a
Box W W' and a Box W' W'' and composes them sequentially to return a Box W W''. The inPar function likewise
takes a circuit c1 of type Box W1 W1' and c2 of type Box W2 W2' and composes them in parallel, producing
c1 ∥ c2 of type Box (W1 ⊗ W2) (W1' ⊗ W2').

Circuits can also be boxed by collecting the input of a circuit in an input pattern box_ p⇒ C, creating
a closed term of type Box W W' in the host language. Here, the input wire type W matches the type of the
input wire p, and the output type W' is the same as that of the underlying circuit. Such a boxed circuit can
be unboxed to be used again in other circuits.

Boxing, unboxing, and composing circuits is illustrated by the teleport circuit:

Definition teleport : Box Qubit Qubit :=
box_ q ⇒
let_ (a,b) ← unbox bell00 () ;

let_ (x,y) ← unbox alice (q,a) ;

unbox bob (x,y,b).

bell00

0

0 H

alice

H meas

meas

bob

X Z

3 A Safe and Unsafe Semantics

As in prior work, QWIRE’s semantics is given in terms of density matrices, denoted ρ , that represent
distributions over pure quantum states known as mixed states. A QWIRE circuit of type Box W W' maps a
2JWK×2JWK density matrix to a 2JW ′K×2JW ′K density matrix, where JW K is the size of a wire type:2

JOneK = 0 JQubitK = JBitK = 1 JW1⊗W2K = JW1K+ JW2K

In this work we use mixed states only to refer to total, rather than partial distributions. This means that
all of our mixed states have a trace equal to 1.

In this work, we give two different semantics for quantum circuits that differ in how they treat as-
sertions. The safe semantics corresponds to an operational model that does not trust assertions, so an
assertx gate first measures the input qubit before discarding the result. The unsafe semantics assumes
that assertions are accurate, so an assertx gate simply discards its input qubit without measuring it. The
two semantics coincide exactly when all assertions in a circuit are accurate, in which case we call the
circuit valid.

In the safe semantics, assertions are identical to the discard gate, which measures and then discards
the qubit.

denote safe U ρ = JUKρJUK†

denote safe init0 ρ = ∣0⟩ρ ⟨0∣
denote safe init1 ρ = ∣1⟩ρ ⟨1∣
denote safe meas ρ = ∣0⟩⟨0∣ρ ∣0⟩⟨0∣+ ∣1⟩⟨1∣ρ ∣1⟩⟨1∣

denote safe {discard, assert0, assert1} ρ = ⟨0∣ρ ∣0⟩+ ⟨1∣ρ ∣1⟩
2In practice, the semantics must be “padded” by an additional type so that it can be applied in a larger quantum system.
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Here JUK is the unitary matrix corresponding to the gate U; multiplying by JUK and JUK† is equivalent
to applying JUK to all the pure states in the distribution. The initialization gates init0 and init1 both
add a single qubit to the system, in the ∣0⟩ and ∣1⟩ states respectively. The meas gate produces a mixed
state corresponding to a probability distribution over the measurement result (∣0⟩ or ∣1⟩). The discard

gate removes a classical-valued bit from the state.
Under the safe semantics, the assertions assert0 and assert1 are treated as a measurement followed

by a discard. This is semantically the same as the denotation of discard, except that discard is guaran-
teed by the type system to only throw away a classically valued bit. This operation on qubits is safe even
if the qubit is in a superposition of ∣0⟩ and ∣1⟩, due to the implicit measurement.

The unsafe semantics is the same as the safe semantics, except for assert0 and assert1:

denote unsafe assert0 ρ = ⟨0∣ρ ∣0⟩
denote unsafe assert1 ρ = ⟨1∣ρ ∣1⟩

It should be immediately clear why this is unsafe: if ρ isn’t in the zero state (in the first case), then
an assertion produces a density matrix with a trace less than 1. Operationally, this corresponds to the
instruction “throw away this qubit in the zero state”, which is quantum-mechanically impossible in the
general case. However, this semantics corresponds to the intended meaning of assert_x when we know
the assertion is true. It also ensures that the composition of init_x with assert_x is equivalent to the
identity, which allows us to optimize away qubit initialization and discarding.

We can now define what it means for the ancilla assertions in a circuit to be valid.

Definition valid_ancillae W (c : Circuit W) : P := (denote c = denote_unsafe c).

An equivalent definition states that the unsafe semantics preserves the trace of its input (which is always
1) and therefore maps it to a total probability distribution.

Definition valid_ancillae' W (c : Circuit W) : P :=
∀ ρ, Mixed_State ρ → trace (denote_unsafe c ρ) = 1.

The second definition follows from the first because the safe semantics is trace preserving. The first fol-
lows from the second since the denote_unsafe c ρ corresponds to a sub-distribution of denote_safe c ρ .
If its trace is one, they must then represent the same distribution.

These two definitions precisely characterize what it means for circuits to have valid annotations. In
the next section we define syntactic conditions that are sufficient but not necessary for validity. Program-
mers will often write syntactically valid circuits (such as the compiler in Section 5) but in the edge case,
the semantic definitions of validity is still available.

An important property related to the validity of a circuit is its reversibility. We say that c and c' are
equivalent, written c ≡ c', if both their safe and unsafe denotations are equal. Reversibility says that a
circuit has a left and right inverse:

Definition reversible {W1 W2} (c : Box W1 W2) : P :=
(exists c', c' ;; c ≡ id_circ) ∧ (exists c', c ;; c' = ≡ id_circ)

In Section 5, the compiler produces circuits that are their own inverse:

Definition self_inverse {W} (c : Box W W) : P := c ;; c ≡ id_circ.

We can now show that in any reversible circuit, all the ancilla assertions hold.
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Lemma 3.1. If c is reversible, then it is valid.

Proof. Let c′ be c’s inverse. By the second definition of validity, it suffices to show that the trace of
denote_unsafe c ρ is equal to 1 for every initial mixed state ρ . We know that the trace of
denote_unsafe id_circ ρ is 1, hence

1 = trace (denote_unsafe (c;;c') ρ) = trace (denote_unsafe c' (denote_unsafe c ρ))

Because the unsafe semantics is trace-non-increasing, it must be the case that the trace of
denote_unsafe c ρ is 1 as well.

4 Syntactically Valid Ancillae

Let c be a circuit made up only of classical gates: the initialization gates, the not gate X, the controlled-
not gate CNOT, and the Toffoli gate T. Let c′ be the result of reversing the order of the gates in c and
swapping every initialization with an assertion of the corresponding boolean value. Then every assertion
in c; ;c′ (where semicolons denote sequencing) is valid.

Unfortunately, every circuit of this form is also equivalent to the identity circuit, so as a syntactic
condition of validity, this is much too restrictive. In practice, the quantum oracles discussed in the
introduction are mostly symmetric, but they introduce key pieces of asymmetry to compute meaningful
results. In REVERC, this construction is called the restricted inverse; QCL [7] and Quipper [6] take
similar approaches.

Let c be a circuit with an equal number of input and output wires whose qubits can be broken up
into two disjoint sets: the first n qubits are called the source, and the last t circuits are called the target.
That is, c : Box (n+t⊗ Qubit) (n+t⊗ Qubit). The syntactic condition of source symmetry on circuits
guarantees that c is the identity on all source qubits. In addition, it guarantees that assertions are only
made on source qubits with a corresponding initialization.

A classical gate acts on the qubit i if it affects the value of that qubit in an m-qubit system: X acts on
its (only) argument, CNOT acts on its second argument (the target) and Toffoli acts on its third argument.

The property of source symmetry on circuits is defined inductively as follows:

• The identity circuit is source symmetric.

• If g is a classical gate and c is source symmetric, then g ;; c ;; g is source symmetric.

• If g is a classical gate that acts on a qubit in the target, and c is source symmetric, then both g ;; c
and c ;; g are source symmetric.

• If c is source symmetric and i is in the source of c, then init_at b i ;; c ;; assert_at b i is source
symmetric.

The key property of a source symmetric circuit is that it does not affect the value of its source qubits.
We say that a circuit c is a no-op at qubit i if, when initialized with a boolean b, the qubit is still equal
to b after executing the circuit. We could define this as JcK(ρ1⊗ ∣b⟩⟨b∣⊗ρ2) = ρ

′

1⊗ ∣b⟩⟨b∣⊗ρ
′

2 for some
ρ1,ρ2,ρ

′

1,ρ
′

2, but this would require ρ1 and ρ2 (and ρ1 and ρ2) to be separable, which is an unnecessary
restriction. Instead, we use the valid_ancillae predicate and say if we initialize an ancilla in state x at
i, apply b, and then assert that i = x, our assertion will be valid:

Definition noop_on (m k : N) (c : Box (Qubits (1 + m)) (Qubits (1+m)) : P :=
∀ b, valid_ancillae (init_at b i ;; c ;; assert_at b i).
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We similarly define a predicate noop_on_source n, that says that a given circuit is a no-op on each of its
first n inputs.

These inductive definitions allow us to state a number of closely related lemmas about symmetric
circuits:

Lemma 4.1. If the classical gate g acts on the qubit k and i ≠ k, then g is a no-op on i.

Lemma 4.2. Let c be a circuit such that c ;; assert at b i is a valid assertion. Then

c ;; assert at b i ;; init at b i ≡ c b bc c

Lemma 4.3. If c and c’ are both no-ops on qubit i, then c ;; c’ is also a no-op on qubit i.

Conjecture 4.4. If c is source symmetric, then it is a no-op on its source.

These lemmas have been admitted, rather than proven, in the Coq development (Symmetric.v). Con-
jecture 4.4 is labeled as a conjecture rather than a lemma, since we do not yet have a paper proof of the
statement. It may be the case that we need to strengthen our definition of no-op for this conjecture to
hold.

Since all ancillae in a source symmetric circuit occur on sources, we can prove from the statements
above that source symmetric circuits are valid.

Theorem 4.5. If c is source symmetric, then all its assertions are valid.

Source symmetric circuits also satisfy a more general property—they are reversible.
The inverse of a source symmetric circuit is defined by induction on source symmetry:

• The inverse of the identity circuit is the identity;

• The inverse of g ;; c ;; g is g ;; c−1 ;; g;

• The inverse of c ;; g is g ;; c−1 and vice versa; and

• The inverse of init_at b i ;; c ;; assert_at b i is init_at b i ;; c−1 ;; assert_at b i.

Clearly the inverse of any source symmetric circuit is also source symmetric, and the inverse is involutive,
meaning (c−1)−1 = c.

Theorem 4.6. If c is source symmetric, then c−1 ;; c is equivalent to the identity circuit.

Proof. By induction on the proof of source symmetry. The only interesting case is the case for ancilla,
showing

init_at b i ;; c−1 ;; assert_at b i ○ init_at b i ;; c ;; assert_at b i ≡ id_circ.

From Theorem 4.5 we know that the circuit init_at b i ;; c−1 ;; assert_at b i is valid. Then, by Lemma 4.2,
we know that init_at b i ;; c−1 ;; assert_at b i;; init_at b i is equivalent to init_at b i ;; c−1. Thus
the goal reduces to init_at b i ;; c−1 ;; c ;; assert_at b i. This is equivalent to the identity by the induc-
tion hypothesis as well as the fact that init_at b i ;; assert_at b i is the identity.

We can now say that any circuit followed by its inverse is valid. But this theorem is easily extensible.
For instance, we can add the following to our inductive definition of symmetric and the theorem will still
hold:



8 ReQWIRE

• If c is source symmetric and c ≡ c' then c' is source symmetric.

This extension allows us to use existing (semantic) equivalences to satisfy our (syntactic) source symme-
try predicate, which in turn proves the semantic property of validity. For example, because teleportation
is semantically equivalent to the identity circuit, we know trivially that it is valid, even though it is
not source symmetric. The Coq development provides many useful compiler optimizations in the file
Equations.v that can now be used in establishing source symmetry.

5 Compiling Oracles

Now that we have syntactic guarantees for circuit validity, we consider a compiler from boolean expres-
sions to source-symmetric circuits, producing the quantum oracles described in the introduction. The
resulting circuits will all be source symmetric, so it follows from the previous section that their use of
ancillae are valid.

We begin with a small boolean expression language, borrowed from Amy et al. [1], with variables x,
constants, negation ¬, conjunction ∧, and exclusive or ⊕.

b ∶∶= x ∣ t ∣ f ∣ ¬b ∣ b1∧b2 ∣ b1⊕b2

The interpretation function JbKf takes a boolean expression b and a valuation function f : Var → bool

and returns the value of the boolean expression with the variables assigned as in f.
The compiler takes a boolean expression b and a map Γ from the variables of b to the wire indices3

The resulting circuit compile b Γ has ∣Γ∣+1 qubit-valued input and output wires, where ∣Γ∣ is the number
of variables in the scope of b.

The compiler uses init_at, assert_at, X_at, CNOT_at and Toffoli_at circuits, each of which
applies the corresponding gate to the given index in the list of n wires. Due to space constraints, we
show only the cases for true, variables, and b1 ∧ b2; the other cases are analogous.

Fixpoint compile (b : bexp) (Γ : Ctx) : Box (Qubits (1 + ∣Γ∣)) (Qubits (1 + ∣Γ∣)) :=
match b with

| b_t ⇒ X_at 0

| b_var v ⇒ CNOT_at (1 + get_index Γ v) 0

| b_and b1 b2 ⇒ init_at false 1 ;;

id_circ ∥ compile b1 Γ ;;

init_at false 2 ;;

id_circ ∥ id_circ ∥ compile b2 Γ ;;

Toffoli_at 1 2 0 ;;

id_circ ∥ id_circ ∥ compile b2 Γ ;;

assert_at false 2 ;;

id_circ ∥ compile b1 Γ ;;

assert_at false 1

| ...

end.

We make heavy use of sequencing (;;) and parallel (||) operators in defining this circuit. The true case
outputs the exclusive-or of true with the target wire, which is equivalent to simply negating the target
wire. The variable case b_var applies a CNOT gate from the variable’s associated wire to the target,
thereby sharing its value.

3In the Coq development, these maps are represented by linear typing contexts.
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0 0
0 0

compile b1 Γ compile b1 Γ
compile b2 Γ compile b2 Γ

Figure 4: Compiling b1∧b2 on 3 qubits. The top wire is the target.

The b1 ∧ b2 case (Figure 4) is the most interesting. We first initialize a qubit in the 0 state and
recursively compile the value of b1 to it. We then do the same for b2. We apply a Toffoli gate from b1

and b2, now occupying the 1 and 2 positions in our list, to the target qubit at 0. We then reapply the
symmetric functions compile b2 Γ and compile b1 Γ to their respective wires, returning the ancillae to
their original states and discarding them. We are left with the target wire z holding the boolean value
bz⊕(b1∧b2) and ∣Γ∣ wires retaining their initial values. Note that this entire circuit is source symmetric
and therefore our assertions are guaranteed to hold by Theorem 4.5.

We can now go about proving the correctness of this compilation.

Theorem compile_correct : ∀ (b : bexp) (Γ : Ctx) (f : Var → bool) (z : bool),

vars b ⊆ domain Γ →
Jcompile b ΓK (bool_to_matrix t ⊗ basis_state Γ f) =
bool_to_matrix (z ⊕ JbKf) ⊗ basis_state Γ f.

The function basis_state takes the wires referenced by Γ and the assignments of f and produces
the corresponding basis state. This forms the input to the compiled boolean expression along with the
target, a classical qubit in the ∣0⟩ or ∣1⟩ state. The statement of compile’s correctness says that when we
apply Jcompile b ΓK to this basis state with an additional target qubit, we obtain the same matrix with the
result of the boolean expression on the target. The proof follows by induction on the boolean expression.

6 Quantum Arithmetic in QWIRE

In this section we show how to use the compiler from the previous section to implement a quantum adder,
which has applications in many quantum algorithms, including Shor’s algorithm. A verified quantum
adder is therefore an important step towards verifying a variety of quantum programs.

The input to an adder consists of two n-bit numbers represented as sequences of bits x1∶n and y1∶n, as
well as a carry-in bit cin. The output consists of the sum sum1∶n and the carry-out cout .

To begin, consider a simple 1-bit adder that takes in three bits cin,x and y, and computes their sum and
carry-out values. The sum is equal to x⊕y⊕cin and the carry is (cin∧(x⊕y))⊕(x∧y). The expressions
can be compiled to 4- and 5-qubit circuits adder_sum and adder_carry, respectively, where the order of
qubits is cout , sum, y, x, and cin.

Definition adder_sum : Box (4 ⊗ Qubit) (4 ⊗ Qubit) :=
compile ((c_in ∧ (x ⊕ y)) ⊕ (x ∧ y)) (list_of_Qubits 4).

Definition adder_carry : Box (5 ⊗ Qubit) (5 ⊗ Qubit) :=
compile (x ⊕ y ⊕ c_in) (list_of_Qubits 5).

Definition adder_1 : Box (5 ⊗ Qubit) (5 ⊗ Qubit) :=
adder_carry ;; (id_circ || adder_sum).
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Here, adder_sum computes the sum of its three input bits and adder_carry computes the carry, ignoring
the result of adder_sum. Semantically, the adder should produce the appropriate boolean values; the
operation bools_to_matrix converts a list of booleans to a density matrix.

Lemma adder_1_spec : ∀ (cin x y sum cout : bool),

Jadder_1K (bools_to_matrix [cout; sum; y; x; cin])

= (bools_to_matrix [ cout ⊕ (c_in ∧ (x ⊕ y) ⊕ (x ∧ y));

; sum ⊕ (x ⊕ y ⊕ c_in)

; y; x; cin]).

Next, we extend the 1-qubit adder to n qubits. The n-qubit adder contains two parts—adder_left

and adder_right—defined recursively using padded adder_1 and adder_carry circuits. The left part
computes the sum and carry sequentially from the least significant bit, initializing an ancilla for the carry
in each step. When it reaches the most significant bit, it computes the most significant bit of the sum and
carry-out using the 1-qubit adder. The right part of the adder uncomputes the carries and discards the
ancillae. The definitions of the circuits are shown below and illustrated in Figure 5.

Fixpoint adder_left (n : N) : Box ((1+3*n) ⊗ Qubit) ((1+4*n) ⊗ Qubit) :=
match n with

| S n' ⇒ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_left n')))) ;;

(init_at false (4*n) 0) ;;

(adder_1_pad (4*n')) end.

Fixpoint adder_right (n : N) : Box ((1+4*n) ⊗ Qubit) ((1+3*n) ⊗ Qubit) :=
match n with

| O ⇒ id_circ

| S n' ⇒ (adder_carry_pad (4*n')) ;;

(assert_at false (4*n) 0) ;;

(id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_right n')))) end.

Fixpoint adder_circ (n : N) : Box ((2+3*n) ⊗ Qubit) ((2+3*n) ⊗ Qubit) :=
match n with

| O ⇒ id_circ

| S n' ⇒ (id_circ ∥ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_left n'))))) ;;

(adder_1_pad (4*n')) ;;

(id_circ ∥ (id_circ ∥ (id_circ ∥ (id_circ ∥ (adder_right n'))))) end.

We now state the correctness of the n-qubit adder:

Lemma adder_circ_n_spec : ∀ (n : N) (f : Var → bool),

let li := list_of_Qubits (2 + 3 * n) in

Jadder_circ_n nK (ctx_to_matrix li f)

= (ctx_to_matrix li (compute_adder_n n f)).

Like bools_to_matrix above, ctx_to_matrix takes in a context and an assignment f of variables
to booleans, and constructs the corresponding density matrix. The function compute_adder_n likewise
takes a function f that assigns values to each of the 3∗n+2 input variables and returns a boolean function
f ′ representing the state of the same variables after addition (computed classically). The specification
states that the n-bit adder circuit computes the state corresponding to the function compute_adder_n for
any initial assignment.

Note that the lemma gives a correspondence between the denotation of the circuit and functional
computation on the assignment. This can reduce the time required to verify more complex arithmetic
circuits. A natural next step is to verify the correspondence between our functions on lists of booleans
and Coq’s binary representations of natural numbers, thereby grounding our results in the Coq standard
library and allowing us to easily move between numerical representations.
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cin

adder left n′ adder right n′

cin

x1∶n′ x1∶n′

y1∶n′ y1∶n′

sum1∶n′ sum′

1∶n′

adder 1

xn xn

yn yn

sumn sum′

n
cout c′out

Figure 5: A quantum circuit for the n-adder where n′ = n−1 . The n′ ancillae created in adder_left are
all terminated inside adder_right.

7 Related and Future Work

The area of reversible computation well predates quantum computing. [2], Bennett [2] introduced the
reversible Turing machine, with the intent of designing a computer with low energy consumption, since
destroying information necessarily dissipates energy. Toffoli designed the general approach for con-
verting classical circuits to reversible ones presented in our introduction. While these ideas strongly
influenced quantum computation, reversible computation is a subject of great interest in its own right,
and we refer the interested reader to a standard text on the subject [4, 10].

This work builds heavily on the Quipper quantum programming language [6, 5], which includes
ancillae terminations that are optimized away by joining them to corresponding initializations. Unfortu-
nately, as is noted in the introduction, the language has no way of checking its “assertive terminations”:

The first thing to note is that it is the programmer, and not the compiler, who is asserting
that the qubit is in state ∣0⟩ before being terminated. In general, the correctness of such an
assertion depends on intricacies of the particular algorithm, and is not something that the
compiler can verify automatically. It is therefore the programmer’s responsibility to ensure
that only correct assertions are made. The compiler is free to rely on these assertions, for
example by applying optimizations that are only correct if the assertions are valid. [6]

This work was motivated precisely by the desire to fill in this gap, and by Quipper’s demonstration of the
power of assertive terminations.

The other important work in this space is Amy et al.’s REVERC [1], which builds upon the REVS

programming language [8], a small heavily-optimized language for reversible computing. REVERC
verifies many of the optimizations from REVS and includes a compiler from boolean expressions to
reversible circuits. The validity of this compilation is verified in the F⋆ programming language [14]. One
key challenge in this paper was to port that compiler from a language that uses only classical operations
on numbered registers (and whose semantics are therefore in terms of boolean expressions), to a language
using higher-order abstract syntax whose denotation is in terms of density matrices (representing pure
and mixed quantum states).

The State of QWIRE This paper, and the whole QWIRE project, is a work in progress. QWIRE has
been used to verify some interesting programs, including quantum teleportation, Deutsch’s algorithm
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and a variety of random number generators (see HOASProofs.v in the development). It can also be used
to prove the validity of a number of circuit optimizations, such as those of Staton [13] (see Equations.v).
However, much remains to be done. The authors’ goal is to formally verify all of the claims in this paper,
though some work still remains.

In particularly, the following lemmas remain to be proved in Coq, by section:

• In Section 3, the proof of the equivalence of the two definitions of valid_ancillae (though the
this paper does not build on that equivalence); and the proof of Lemma 3.1.

• In Section 4, Lemmas 4.1 to 4.3 and Conjecture 4.4.

• In Section 5, that the CNOT_at and Toffoli_at circuits, as well as sequencing ;; and parallel ∥
combinators, match their intended semantics.

The next step for QWIRE is to implement and verify circuit optimizations. We already have a num-
ber of equivalences we can in principle use to rewrite our circuits, and this work introduces new possible
optimization, like reusing ancillae. It also allows us to treat circuits that properly initialize and dispose
of ancilla as unitary circuits, allowing for further optimizations. Given that much of the progress towards
practical quantum computing comes from increasingly clever optimizations (in tandem with more pow-
erful quantum computers), verified compilation should play an important and exciting role in the near
future.
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[14] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest,
Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss et al. (2016): Dependent
types and multi-monadic effects in F⋆. In: ACM SIGPLAN Notices, 51, ACM, pp. 256–270.

[15] Tommaso Toffoli (1980): Reversible computing. In: International Colloquium on Automata, Languages, and
Programming, Springer, pp. 632–644.

http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1145/2676726.2676999

	Introduction
	The Qwire Circuit Language
	A Safe and Unsafe Semantics
	Syntactically Valid Ancillae
	Compiling Oracles
	Quantum Arithmetic in Qwire
	Related and Future Work

