Quantum Computing

for Programming Language Researchers

or:
I sort of understand quantum computing, and so can you!

Jennifer Paykin
PLanQC, January 2020
|galois|
© 2020 Galois, Inc.

Quantum Computing: not so scary

Quantum Computing: not so scary

Quantum Computing: not so scary

- A little linear algebra
- Interest in learning something new
mix
Frexinarres DISCLAIMER
will make some generalizations in this talk... sorry!

Outline

(1) Quantum computers
(2) Syntax and semantics

Circuit model semantics

The NISQ era

State-of-the-art quantum computers have...

- 50-100 qubits
- a variety of implementation techniques
- quantum supremacy (well, almost)
- a lot of noise introducing errors

NISQ = Noisy Intermediate-Scale Quantum

Quantum PL

- Language design
- Functions, data types, modularity
- Quantum circuits

Simple, intuitive, compositional

- Operational, denotational, categorical semantics

Quantum PL

- Compilers, optimizations
- Algorithms
- Application areas
- Chemistry, cryptography, machine learning...
- Logic, formal methods

Outline

(1) Quantum computers

(2) Syntax and semantics

Qubits (Quantum bits)

Syntax

$$
q::=|0\rangle| | 1\rangle
$$

〈bra | ket〉

Qubits

Syntax

$$
\begin{aligned}
& q::=|0\rangle| | 1\rangle \\
& \quad|\alpha| 0\rangle+\beta|1\rangle
\end{aligned}
$$

〈bra | ket〉
where $\alpha, \beta \in \mathbb{C}$ and $\alpha^{2}+\beta^{2}=1$

Qubits

Syntax

$$
\begin{array}{rr}
q::=|0\rangle| | 1\rangle & \langle\text { bra }| \text { ket }\rangle \\
|\alpha| 0\rangle+\beta|1\rangle & \text { where } \alpha, \beta \in \mathbb{C} \\
& \text { and } \alpha^{2}+\beta^{2}=1
\end{array}
$$

Semantics

$$
\begin{aligned}
\binom{\alpha}{\beta} \quad \text { where }|0\rangle & =\binom{1}{0} \\
\text { and }|1\rangle & =\binom{0}{1}
\end{aligned}
$$

A quantum programming language

$c::=\cdots$

(quantum commands)
$c \vdash q \rightarrow^{p} q^{\prime}$
(operational semantics)
$q::=\alpha|0\rangle+\beta|1\rangle \mid \cdots$
(quantum state)
$p \in \mathbb{R}$
(probability)

Measurement: c $::=\cdots \mid \operatorname{meas}(x)$

Semantics

$\operatorname{meas}(x) \vdash \alpha|0\rangle+\beta|1\rangle \rightarrow \rightarrow^{\alpha^{2}}|0\rangle$ $\operatorname{meas}(x) \vdash \alpha|0\rangle+\beta|1\rangle \rightarrow \rightarrow^{\beta^{2}}|1\rangle$

Recall $\alpha^{2}+\beta^{2}=1$.

Measurement: c $::=\cdots \mid \operatorname{meas}(x)$

Semantics

$\operatorname{meas}(x) \vdash \alpha|0\rangle+\beta|1\rangle \rightarrow \rightarrow^{\alpha^{2}}|0\rangle$
 $\operatorname{meas}(x) \vdash \alpha|0\rangle+\beta|1\rangle \rightarrow^{\beta^{2}}|1\rangle$

Example (Measuring a classical state)

$$
\begin{array}{ll}
\operatorname{meas}(x) \vdash|0\rangle & { }^{1}|0\rangle \\
\operatorname{meas}(x) \vdash|0\rangle & \rightarrow^{0}|1\rangle
\end{array}
$$

Measurement: c $::=\cdots \mid \operatorname{meas}(x)$

Semantics

Example (Measuring superposition)
meas $(x) \vdash \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \rightarrow{ }^{\frac{1}{2}}|0\rangle$
meas $(x) \vdash \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \rightarrow{ }^{\frac{1}{2}}|1\rangle$

Density matrix semantics

$$
\begin{aligned}
& \operatorname{meas}(x) \vdash \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \rightarrow^{\frac{1}{2}}|0\rangle \\
& \operatorname{meas}(x) \vdash \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \rightarrow^{\frac{1}{2}}|1\rangle
\end{aligned}
$$

Density matrix encodes a probability distribution over quantum states.

$$
\llbracket \operatorname{meas}(x) \rrbracket\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

Systems of multiple qubits

Syntax

$$
\left.q::=\cdots\left|\alpha_{00}\right| 00\right\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

where $\alpha_{00}^{2}+\alpha_{01}^{2}+\alpha_{10}^{2}+\alpha_{11}^{2}=1$

Systems of multiple qubits

Syntax

$$
\begin{aligned}
& \left.q::=\cdots\left|\alpha_{00}\right| 00\right\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \\
& \quad \text { where } \alpha_{00}^{2}+\alpha_{01}^{2}+\alpha_{10}^{2}+\alpha_{11}^{2}=1
\end{aligned}
$$

Semantics

$$
\left(\begin{array}{l}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right) \quad \text { where }|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \ldots
$$

Combining independent qubits

Syntax

$$
q::=\cdots \mid q_{1} \otimes q_{2}
$$

Semantics

$$
\begin{aligned}
& \binom{\alpha_{0}}{\alpha_{1}} \otimes\binom{\beta_{0}}{\beta_{1}}=\left(\begin{array}{l}
\alpha_{0} \beta_{0} \\
\alpha_{0} \beta_{1} \\
\alpha_{1} \beta_{0} \\
\alpha_{1} \beta_{1}
\end{array}\right) \\
& =\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle
\end{aligned}
$$

Entanglement

Not all 2-qubit states can be factored into two 1-qubit states.

Example (Bell state)

$$
\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

Multiple qubits

$$
\begin{aligned}
& c \vdash \gamma \rightarrow^{p} \gamma \\
& \gamma::=\langle[I s] ; q\rangle \\
& \\
& l s::=\left[x_{1}, \ldots, x_{n}\right] \quad \text { (configuration) } \\
& \text { (qubit ordering) }
\end{aligned}
$$

$$
q::=\cdots
$$

(quantum state)
$p \in \mathbb{R}$
(probability)

Measurement with multiple qubits

Semantics (Independent)

$$
\begin{aligned}
\operatorname{meas}(x) & \vdash\left\langle[x, y] ;(\alpha|0\rangle+\beta|1\rangle) \otimes q_{y}\right\rangle \\
& \left.\rightarrow \alpha^{\alpha^{2}}\langle[x, y] ; \mid 0\rangle \otimes q_{y}\right\rangle
\end{aligned}
$$

$$
\operatorname{meas}(x) \vdash\left\langle[x, y] ;(\alpha|0\rangle+\beta|1\rangle) \otimes q_{y}\right\rangle
$$

$$
\left.\rightarrow^{\beta^{2}}\langle[x, y] ; \mid 1\rangle \otimes q_{y}\right\rangle
$$

Measurement with multiple qubits

Semantics (Entangled)

$$
\begin{aligned}
\operatorname{meas}(x) & \vdash\left\langle[x, y] ; \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right\rangle \\
& \left.\rightarrow{ }^{\frac{1}{2}}\langle[x, y] ; \mid 00\rangle\right\rangle
\end{aligned}
$$

$\operatorname{meas}(x) \vdash\left\langle[x, y] ; \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right\rangle$

$$
\left.\rightarrow^{\frac{1}{2}}\langle[x, y] ; \mid 11\rangle\right\rangle
$$

Initialization

Syntax

$$
\begin{aligned}
& c::=\cdots \mid x=\operatorname{init}(b) \\
& b \in \operatorname{Bit}
\end{aligned}
$$

$$
|b\rangle
$$

Semantics

$$
x=\operatorname{init}(b) \vdash\langle[\mid s] ; q\rangle \rightarrow\langle[\mid s, x] ; q \otimes \mid b\rangle\rangle
$$

Initialization

Syntax

$$
\begin{aligned}
& c::=\cdots \mid x=\operatorname{init}(b) \\
& b \in \operatorname{Bit}
\end{aligned}
$$

$$
|b\rangle-
$$

Semantics

$$
x=\operatorname{init}(b) \vdash\langle[I s] ; q\rangle \rightarrow\langle[I s, x] ; q \otimes \mid b\rangle\rangle
$$

We initialize classical, independent qubits. How to get superpositions and entanglement?

Unitary transformations

Syntax

$c::=\cdots \mid U\left(x_{1}, \ldots, x_{n}\right)$
$U::=\cdots$ (Unitary operations)

Unitary transformations

Syntax

$c::=\cdots \mid U\left(x_{1}, \ldots, x_{n}\right)$
$U::=\cdots$ (Unitary operations)

Semantics

$$
U(\overrightarrow{x s}) \vdash\langle[\overrightarrow{x s}] ; q\rangle \rightarrow\langle[\overrightarrow{x s}] ; \llbracket U \rrbracket(q)\rangle
$$

$\llbracket U \rrbracket \in \mathcal{U}$: a square, complex matrix satisfying

$$
\llbracket U \Lambda^{\dagger} \llbracket U \rrbracket=\llbracket U \rrbracket \llbracket \rrbracket^{\dagger}=1 .
$$

Unitary transformations (X/NOT)

Syntax

$$
U::=\cdots \mid X
$$

Semantics

$$
\llbracket X \rrbracket=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Unitary transformations (X/NOT)

Syntax

$$
U::=\cdots \mid X
$$

Semantics

$$
\llbracket X \rrbracket=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Example

$$
\begin{aligned}
\llbracket X \rrbracket(\alpha|0\rangle+\beta|1\rangle) & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\alpha}{\beta} \\
& =\binom{\beta}{\alpha}=\beta|0\rangle+\alpha|1\rangle
\end{aligned}
$$

Unitary transformations (Hadamard)

Syntax

$U::=\cdots \mid H$

Semantics

$$
\llbracket H \rrbracket=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Unitary transformations (Hadamard)

Syntax

Semantics

$$
\llbracket \mathrm{H} \rrbracket=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Example

$$
\begin{aligned}
\llbracket H \rrbracket(|0\rangle) & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{0} \\
& =\frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
\llbracket \mathrm{H} \rrbracket(|1\rangle) & =\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{aligned}
$$

Unitary transformations (Hadamard)

Syntax

$$
U::=\cdots \left\lvert\, H \quad \llbracket H \rrbracket=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right.
$$

Example

$$
\begin{aligned}
& \llbracket H \rrbracket(|0\rangle)=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle=|+\rangle \\
& \llbracket H \rrbracket(|1\rangle)=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle=|-\rangle
\end{aligned}
$$

Unitary transformations (CX/Controlled NOT)

Semantics

Syntax

$$
U::=\cdots \mid C X
$$

$$
\llbracket C X \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Unitary transformations (CX/Controlled NOT)

Semantics

Syntax

$$
U::=\cdots \mid C X
$$

$$
\llbracket C X \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Example

$$
\begin{aligned}
\llbracket C X \rrbracket(|00\rangle) & =|00\rangle \\
\llbracket C X \rrbracket(|01\rangle) & =|01\rangle \\
\llbracket C X \rrbracket(|10\rangle) & =|11\rangle \\
\llbracket C X \rrbracket(|11\rangle) & =|10\rangle
\end{aligned}
$$

Classical control flow?

if b then $c 1$ else $c 2$

QRAM model semantics

classical
computer

QRAM model semantics

classical
computer

QRAM model semantics

circuits
 results

quantum computer

QRAM model semantics

C_{1}

circuits
 results

Quantum while language

Syntax

$c::=\cdots \mid$ while meas (q) do c
\mid if meas (q) then c_{1} else c_{0}
"Quantum data, classical control"

A small quantum language

Syntax

$$
c::=x=\operatorname{init}(b)|\operatorname{meas}(x)| U\left(\overrightarrow{x_{i}}\right)
$$

SKIP $|c ; c|$ if $\operatorname{meas}(q)$ then c_{1} else c_{0} \mid while meas (q) do c

$$
c \vdash\langle[I s] ; q\rangle \rightarrow^{p}\left\langle\left[\mid s^{\prime}\right] ; q^{\prime}\right\rangle
$$

Other language designs

- Functional languages with linear types
- Embedded language
- Quantum-specific abstractions and applications
- Categorical semantics
- Graphical calculi e.g. ZX-calculus
- A lot of creativity!

Quantum Computing

for Programming Language Researchers

or:
I sort of understand quantum computing, and so can you!

Jennifer Paykin
PLanQC, January 2020
|galois|
© 2020 Galois, Inc.

