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Abstract
We develop a static complexity analysis for a higher-order func-
tional language with structural list recursion. The complexity of an
expression is a pair consisting of a cost and a potential. The former
is defined to be the size of the expression’s evaluation derivation in
a standard big-step operational semantics. The latter is a measure
of the “future” cost of using the value of that expression. A trans-
lation function ‖·‖ maps target expressions to complexities. Our
main result is the following Soundness Theorem: If t is a term in the
target language, then the cost component of ‖t‖ is an upper bound
on the cost of evaluating t. The proof of the Soundness Theorem is
formalized in Coq, providing certified upper bounds on the cost of
any expression in the target language.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification; F.2.m [Analysis of Algo-
rithms and Problem Complexity]: Miscellaneous; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Theory, Verification.

Keywords Higher-order complexity; automated theorem proving;
certified bounds.

1. Introduction
Though cost analyses are well-studied, they are traditionally per-
formed by hand in a relatively ad-hoc manner. Formalisms for
(partially) automating the analysis of higher-order functional lan-
guages have been developed by, e.g., Shultis [1985], Sands [1990],
Van Stone [2003], and Benzinger [2004].1 These formalisms map
target-language programs into a domain of complexities, which can
then be reasoned about more-or-less formally. The translations carry

∗Current address: Department of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104 USA.
1 This is an incomplete list; we focus here only on work that directly
addresses the analysis of higher-order functional languages and/or the
automation of that analysis, and we discuss these systems in more detail in
Section 7.
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over information regarding the values of subexpressions, which
can then be “discarded” during reasoning about cost should that be
appropriate.

In this paper we aim for a similar goal, but take an approach
inspired by the work of [Danner and Royer 2009]. There we
analyzed a programming language for type-level 2 functions in a
restricted type system motivated by work in implicit computational
complexity. The goal there was to prove that all programs in our
formalism are computable in type-2 polynomial time. Here we take
the same analysis tools and apply them to a version of Gödel’s
System T , not to establish fixed time bounds, but to construct
expressions that bound the cost of the given program. The key
difference between our approach and those discussed above is that
we aim for upper bounds on cost in terms of input size, rather
than an exact analysis in terms of values. This more modest goal
allows us to develop a notion of complexity that bounds the run-
time cost of any target program evaluation on inputs of a given
size. Besides providing us with a simpler setting in which to reason
about complexity, the absence of values in the upper bounds is
also in line with typical algorithm analysis. A long-term goal is
to incorporate well-established analysis techniques into the formal
system of reasoning that we present here.

In this paper we consider a higher-order language, defined in
Section 2, over integers and integer lists with structural list recursion.
Since the interesting analyses are done in terms of the sizes of the
lists involved, we declare all integers to be of some constant size,
which we denote by 1. As an example of our analysis, let us consider
list insertion, defined by

ins (x , nil ) = [ x ]
ins (x , y : : ys ) =

if (x<=y ) then x : : y : : ys else y : : ( ins (x , ys ) )

A simple cost analysis of ins yields a recursive cost function ins_c
for which the recurrence argument is the length of the list argument
of ins:

ins_c(0) = c0 ins_c(n+1) = c1 +
(
c2∨ (c3 +ins_c(n))

)
where the ci are constants. The maximum in the recursion clause
ensures that we need not consider the value of the test x <= y. An
easily-formalized proof by induction tells us that ins_c(n) ∈ O(n).
But this is not enough for our purposes. We want our analyses to be
compositional, so that we can directly use the analysis of, say, ins
in the analysis of insertion-sort defined by

ins_sort xs = fold ins xs nil

An implicit part of the analysis of ins_sort uses the size of ins xs
in terms of the size of xs. Thus in addition to the cost analysis above,
our approach also generates a size analysis, which we refer to as
potential (more on this terminology momentarily). The following is
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a possible potential analysis of ins:

ins_p(0) = 1 ins_p(n+1) = (n+1)∨ (1+ins_p(n))

where again we take a maximum so that we need not consider the
value of the test x <= y.

Since we are interested in higher-order languages, we also need
to consider algorithms which take functions as input. For this,
we need some way to represent the cost associated with using a
function; this, combined with size, is our notion of potential, which
we describe more fully in Section 3. For type-level 0 objects, we
can think of potential as ordinary size, which is why ins_p is
a function from integers to integers. The potential of a function
essentially encompasses its cost analysis—the potential of f is a
map from potentials p (representing the potential of the argument)
to the complexity of applying f to an argument of size p. Our
complexity analysis of an expression yields a pair consisting of a
cost (of computing that expression to obtain a value) and a potential
(representing the size of that value). We refer to such a pair as a
complexity.

The complexity language that we define in Section 3 allows us to
express recurrences like ins_c and ins_p. In Section 4 we define a
translation function ‖·‖ from the target language to the complexity
language so that ‖ins‖ encompasses these two recurrences. The
recurrences that result from the translation will be more complicated
than those shown here because they take complexities, as opposed
to sizes, as arguments. But as shown in Section 4.1.1, it is easy to
extract ins_c and ins_p from ‖ins‖.

As another example, consider the map function defined by

map h nil = nil
map h ( x : : xs ) = ( h x ) : : ( map h xs )

The natural cost analysis of map yields a recurrence that depends
on the cost of applying h to account for the term h x in the
recursion clause. Note that this is not the cost of h itself (or any
specific function argument). Indeed, since any specific function
argument is likely to be expressed as a λ -abstraction, the cost
of such an argument would be 1. Instead, we must refer to the
potential of the function argument h; applied to the potential of a
list element x (representing the size of x), we obtain the complexity
of the application h(x). That complexity is a pair consisting of the
cost of the application and its potential. Taking into account that
our integers have constant size 1, we end up with a cost analysis
that looks something like the following, where h now represents the
complexity of the function argument:2

map_c(h,0) = 0 map_c(h,n+1) = (hp(1))c +map_c(h,n)

where (·)c and (·)p extract the cost and potential components of a
complexity, respectively. The potential analysis is straightforward
and does not depend on the function argument:

map_p(h,0) = 0 map_p(h,n+1) = 1+map_p(h,n)

It is nice that our translation gives the expected costs in these
examples, but of course we want to know that it is sound, in the sense
that ‖t‖ bounds the complexity of t. We prove such a Soundness
Theorem in Section 5 and state clearly the corollary that an upper
bound on the evaluation of cost t can be derived directly from ‖t‖.

The function ‖·‖ is computable, and hence provides a formal
link between the program source code and its complexity bound. We
have implemented a subset of the target and complexity languages,
translation, and proof of the Soundness Theorem in Coq, and we
discuss some of the details of this in Section 6. The formalization

2 As we will see, parameters in complexity functions that correspond to (list-)
recursion arguments represent the potential of such arguments. Parameters
that correspond to non-recursion arguments represent the complexity of
those arguments.

thus provides a mechanism for providing certified upper bounds on
the complexity of target language expressions. This is in distinction
to a more traditional ad-hoc analysis; such an analysis, even if
formalized in a system such as Coq, is not tied to the source code
in a machine-checkable manner, and so one still does not have a
proof that the code to be executed satisfies the cost bounds that are
asserted.

2. Target language
The target language is essentially a variant on Gödel’s System T ; its
syntax, typing, and operational semantics are given in Figures 1–3.
The language provides for higher-order programming over integers,
booleans, and integer lists (the base types). The latter are defined
as a recursive datatype, and the datatype definition automatically
provides for structural recursion. The work in this paper extends to
other comparable recursive datatypes; we treat the special case here
to cut down on notation.3 Since the language is straightforward, we
omit many of the details. A term is a typeable expression Γ ` t : τ .
The operational semantics defines a big-step call-by-value evaluation
relation that relates closures (Γ ` t : τ)ξ to values vθ (we usually
drop the typing details and just write t ξ ). A closure t ξ consists of a
term t and a value environment ξ that maps variables to values such
that Dom ξ contains all of t’s free variables. We write {} for the
empty environment. A value vθ consists of a value expression and
a value environment. A value expression is any of the following:

• A boolean value tt or ff or integer value n ∈ Z;
• Any finite sequence (n0, . . . ,nk−1) of integers;
• Any expression of the form λx.r.

We often write (n,ns) for the sequence (n,n0, . . . ,nk−1) when
ns = (n0, . . . ,nk−1) and write () for the empty sequence. Since
the grammar does not allow lists of higher-order expressions and
the semantics does not have side-effects, we can safely drop the
environment at leaves of evaluation derivations that derive values of
base type. We do so in order to simplify the statements of the rules
for evaluating lists; it is not necessary in practice. To further clean
up notation, we often write tt or ns instead of tt{} or ns{}.

The evaluation of fold r of (s, [x,xs,w]t) when r ξ ↓ (n,ns)
deserves some comment. A more natural rule might be

r ξ ↓ (n,ns) (fold ns of (s, [x,xs,w]t))ξ ↓ v0 θ0 t ξ1 ↓ vθ

(fold r of (s, [x,xs,w]t))ξ ↓ vθ

However, the fold “expression” in the hypothesis is not well-
formed, because ns is not an expression, it is a value. There is
an obvious isomorphism between the two that we could employ,
but then evaluating the hypothesis fold expression would require
re-evaluating the list corresponding to ns which would add (possibly
non-trivially) to the cost of the evaluation. Thus we choose a fresh
variable y and bind y to ns in the environment; as a result, every
future evaluation of the recursion argument will have cost 1.4

We define the cost of a closure tξ , cost(tξ ), to be the size of
the evaluation derivation of tξ (it is straightforward to prove that
derivations are unique). We charge unit cost for arithmetic operations
and count every inference rule. We can easily adapt the system for
other notions of cost (e.g., counting only creation of cons-cells) by
modifying the complexity semantics described in Section 3.

3 Our language does not support general recursion, and recursive datatypes
in general pose some difficulties; we discuss both issues in Section 8.
4 If fold were defined in terms of a more general letrec constructor, then
a standard operational semantics of letrec as in [Reynolds 1998] would
introduce a comparable fresh variable.
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xξ ↓ ξ (x) cξ ↓ c{} (λx.r)ξ ↓ (λx.r)ξ
r ξ ↓ nr {} sξ ↓ ns {} nr R ns (R =<,≤,=, . . . )

(r R s)ξ ↓ tt{}
r ξ ↓ nr {} sξ ↓ ns {} ¬(nr R ns) (R =<,≤,=, . . . )

(r R s)ξ ↓ ff {}
r ξ ↓ nr {} sξ ↓ ns {} n = nr •ns (•=+,−,×, . . . )

(r • s)ξ ↓ n{}

nilξ ↓ (){}
r ξ ↓ n{} sξ ↓ ns{}
(r :: s)ξ ↓ (n,ns){}

r ξ ↓ (λx.r0)θ0 sξ ↓ v1 θ1 r0 θ0{x 7→ v1 θ1} ↓ vθ

(r s)ξ ↓ vθ

r ξ ↓ (){} sξ ↓ vθ

(case r of (s, [x,xs]t))ξ ↓ vθ

r ξ ↓ (n,ns){} t ξ{x,xs 7→ n,ns} ↓ vθ

(case r of (s, [x,xs]t))ξ ↓ vθ

r ξ ↓ (){} sξ ↓ vθ

(fold r of (s, [x,xs,w]t))ξ ↓ vθ

r ξ ↓ (n,ns){} (fold y of (s, [x,xs,w]t))ξ0 ↓ v0 θ0 t ξ1 ↓ vθ

(fold r of (s, [x,xs,w]t))ξ ↓ vθ

where y is fresh;ξ0 = ξ{y 7→ ns};ξ1 = ξ{x,xs,w 7→ n,ns,v0 θ0}

Figure 3. Target language operational semantics. c ranges over integer and boolean constants and c over the corresponding values. The third
hypothesis of the relation and operation rules has unit cost.

e ∈ Exp ::= X | Z | true | false | nil | e :: e | e R e |
if e then e else e | λx.e | ee

case e of (e, [x,xs]e) | fold e of (e, [x,xs,w]e)

Figure 1. Target language grammar. X ranges over variable identi-
fiers, Z over integer constants, and R over numerical binary relations
such as ≤ and > and numerical binary operators such as + and ×.

σ ,τ ::= int | bool | int∗ | σ→ τ

int∗ ::= nil | :: of (int ,int∗)

Γ ` e0 :int∗ Γ ` e1 : σ Γ,x :int,xs :int∗ ` e2 : σ

Γ ` case e0 of (e1, [x,xs]e2) : σ

Γ ` e0 :int∗ Γ ` e1 : σ Γ,x :int,xs :int∗,w : σ ` e2 : σ

Γ ` fold e0 of (e1, [x,xs,w]e2) : σ

Figure 2. Target language types and typing. Rules not shown here
are the expected ones.

3. The complexity language
Our goal is to assign a complexity ‖t‖ to each target language
expression t. We have three desiderata on ‖·‖:
• ‖t‖ must provide an upper bound on the cost of evaluating t.
• ‖·‖ must be compositional.
• ‖t‖ must not depend on the value of any subexpression of t.

Since closures, not expressions, are evaluated in the target language,
‖t‖ will also be an expression, the meaning of which is determined
by an environment assigning complexities to its free variables.
To say that ‖·‖ is compositional means that ‖t‖ depends only on
expressions ‖s‖ for subexpressions s of t. Because of the third
constraint, the information we provide about the evaluation cost
of t is not as precise as that of as the systems mentioned in the
introduction. However, this constraint is in line with almost all

the work in practical analysis of algorithms and thus opens up the
possibility of using the considerable body of tools and tricks of
analysis of algorithms in our verifications.

A complexity measure that considers only cost is insufficient if
we want to be able to handle higher-order expressions like map. To
see why, consider any expression λx.r such that map(λx.r) is well-
typed.5 Assuming that ‖·‖ is compositional, if ‖t‖ were to provide
information on just the cost of evaluating t, then since the cost of
λx.r is 1, the cost of map(λx.r) would be independent of r. What we
need instead is a complexity measure such that ‖t‖ not only captures
the cost of evaluating t, but also the cost of using t. We call this latter
notion potential, and a complexity will be a pair consisting of a cost
and a potential. To gain some intuition for the full definition, we
consider the type-level 0 and 1 cases. At type-level 0, the potential
cost of an expression is a measure of the size of that expression’s
value. Now consider a type-level 1 expression r. The use of r is
its application to a type-level 0 expression s. The cost of such an
application is the sum of (i) the cost of evaluating r to a value λx.r′;
(ii) the cost of evaluating s to a value v′; (iii) the cost of evaluating
r′[x 7→ v′]; and (iv) a “charge” for the inference. Since (iii) depends
(in part) on the size of v′ (i.e., the potential of s), by compositionality
complexities must capture both cost and potential. Furthermore, (iii)
is defined in terms of the potential of r (i.e., the potential of λx.r′).
Thus the potential of a type-level 1 expression should be a map
from type-level 0 potentials to type-level 0 complexities, and in
general the potential of an expression of type σ→ τ should be a
map from potentials of type-σ expressions to complexities of type-τ
expressions.

We now turn to the formal definitions given in Figures 4–7. We
define a complexity language over a simple type structure with
products into which our translation function ‖·‖ will map. The full
complexity types consist of the simple types with products over N,
which is intended to be the natural numbers and represents both costs
and potentials of base-type values. The complexity and potential
types are defined by the following mutual induction, following our
preceding discussion about the potential of higher-order values:

5 We phrase this informal discussion in terms of evaluating closed expres-
sions rather than closures.

27



1. If γ is a potential type, then N× γ is a complexity type.

2. N is a potential type.

3. If γ is a potential type and τ a complexity type, then γ→ τ is a
potential type.

We introduce two notations for potential types γ: γ� = N× γ and
γ→� τ = (γ→ τ)� (remember that the potential of a function is a
map from argument potentials to result complexities).

The complexity expression constructors roughly mirror the target
expression constructors, and the meaning of the former is intended
to capture the complexity (cost and potential) of the latter. The
grammar of complexity expressions is as expected for the product-
related types, except we write tc and tp for the first and second
projections (for “cost” and “potential”), respectively. The usual
abstraction and application are replaced by λ∗x.r and r ∗ s. As we
will see, we need an operation that “applies” ‖r‖ to ‖s‖; since
both are complexities, and hence pairs, ordinary application does
not suffice. Thus we introduce the ∗ operator so that we can
define ‖rs‖ = ‖r‖ ∗ ‖s‖. λ∗x.r is the corresponding abstraction
operator. Conditional expressions are eliminated in the complexity
language. A conditional expression is translated to (essentially) the
maximum of the complexity of its two branches. This matches our
interest in upper bounds on complexity, ensuring that the complexity
of a conditional bounds the cost of any possible evaluation of
that conditional on inputs of a given size or smaller. The fold
constructor for recursive datatypes has a counterpart pfold in
the complexity language so that recursive definitions in the target
language are translated to recurrences in the complexity language.
Instead of branching on a constructor, pfold branches potentials.
Since case can be seen as a trivial version of fold, it has a
corresponding counterpart pcase.6

Meanings are assigned to complexity terms (typeable complexity
expressions) through a denotational semantics . We take the standard
denotation J·K of full complexity types (interpreting N as the natural
numbers). If Γ is a full complexity type environment, we say that
ξ is Γ-consistent if ξ (x) ∈ JΓ(x)K for all x ∈ Dom Γ. Finally, we
define a function J·K− that maps a complexity term Γ ` e : τ and
Γ-consistent environment ξ to JΓ ` e : τKξ ∈ JτK. We write JeKξ

when Γ is clear from context.
The denotational semantics of the complexity expression con-

structors describes the cost and potential of the corresponding target-
language constructors. For example, consider the evaluation of t = rs
(again, we phrase this discussion in terms of closed expressions for
clarity):

r ↓ λx.r′ s ↓ v′ r′{x 7→ v′} ↓ v
rs ↓ v

.

cost(r) and cost(s) both contribute to cost(t). Recalling our earlier
discussion of higher-type potentials, if ‖r‖ and ‖s‖ are the complex-
ities of r and s, then ‖r‖p(‖s‖p) (a complexity) gives both the cost
of evaluating r′{x 7→ v′} as well as its potential; but its potential is
also the potential of t. Thus we define the meaning of ∗ expressions
so that

J‖r‖∗‖s‖K =
(
1+ J‖r‖cK+ J‖s‖cK+

(
J‖r‖pK(J‖s‖pK)

)
c,(

J‖r‖pK(J‖s‖pK)
)

p

)
.

We frequently need to “add cost to a complexity,” so we define
dally(n,(c, p)) = (n+ c, p). Now we can write, for example,

J‖r‖∗‖s‖K = dally
(
1+ J‖r‖cK+ J‖s‖cK,J‖r‖pK(J‖s‖pK)

)
.

6 In fact, we could also define conditionals in the target language to be
syntactic sugar for a case over the trivial recursive datatype of booleans,
and we would end up with the same complexity semantics.

e ::=X | N | e+ e | e∨ e | (e,e) | ec | ep | λ∗x.e | e∗ e

pcase e of (e, [p, ps]e) | pfold e of (e, [p, ps,w]e).

Figure 4. Complexity language expressions. X is a set of variables
and N a set of constants for each n ∈ N.

σ ,τ ::= N× γ

γ ::= N | γ→ τ

Figure 5. Complexity and potential types. The full complexity types
consist of the simple types with products over N.

Γ,x : σ ` x : σ Γ ` n : N
Γ ` r : N Γ ` s : N

Γ ` r+ s : N
Γ ` r : τ Γ ` s : τ

Γ ` r∨ s : τ

Γ ` r : N s : γ

Γ ` (r,s) : γ�
Γ ` r : γ�

Γ ` rc : N
Γ ` r : γ�

Γ ` rp : γ

Γ,x : γ� ` r : η�

Γ ` λ∗x.r : γ→� η�

Γ ` r : γ→� η� Γ ` s : γ�

Γ ` r ∗ s : η�

Γ ` r : N Γ ` s : γ� Γ, p : N, ps : N ` t : γ�

Γ ` pcase r of (s, [p, ps]t) : γ�

Γ ` r : N Γ ` s : γ� Γ, p : N, ps : N,w : γ� ` t : γ�

Γ ` pfold r of (s, [p, ps,w]t) : γ�

Figure 6. Complexity language typing rules. Recall that γ� =N×γ

and γ→� τ = (γ→ τ)�.

pcase and pfold expressions have a slightly more complex
semantics that might be expected. Focusing on the former, the non-
zero branch of a pcase expression must take the maximum of the
two branches, rather than just the second branch, even though a non-
zero potential ought to correspond to a non-empty list. Because our
goal is to establish upper bounds on complexity (hence potential),
it may be that the branching expression in the target expression
evaluates to nil, but its translation has a non-zero potential. As an
example, consider the term t defined by

case (if true then nil else [0]) of ([0,0], [x ,xs]nil)

The test expression translates to a complexity with potential 1; if
J‖t‖K were to take into account only the non-nil branch, we would
conclude that t has complexity (7,0) (cost 7, potential 0), whereas
in fact it has cost 9 and size 2. A similar issue arises with pfold,
although in this case the cost is not an issue; because pfold is a
structural recursion, the base case expression will be evaluated, and
hence its cost included in the total cost (see Lemma 7 for a precise
statement).

4. Translation from target to complexity language
The translation from target language to complexity language is given
in Figure 8. We assume a bijection between target and complexity
variables, so that when we write ‖x‖= x, the occurrence of x on the
left-hand side is a target variable and the occurrence of x on the right-
hand side is the corresponding complexity variable. The translation
of the simplest target expression constructors gives expressions that
describe directly the cost and size of the corresponding target expres-
sions; more complex constructors are translated to the corresponding

28



JΓ,x : σ ` x : σKξ = ξ (x)

JΓ ` n : NKξ = n

JΓ ` r+ s : NKξ = JrKξ + JsKξ

JΓ ` r∨ s : τKξ = JrKξ ∨ JsKξ

JΓ ` (r,s) : γ
�Kξ = (JrKξ ,JsKξ )

JΓ ` rc : NKξ = π0(JrKξ )

JΓ ` rp : γKξ = π1(JrKξ )

JΓ ` λ∗x.r : γ→�
η
�Kξ = (1,λλ p.JΓ,x : γ

� ` r : η
�Kξ{x 7→ (1, p)})

JΓ ` r ∗ s : η
�Kξ = dally(1+ JrcKξ + JscKξ ,JrpKξ (JspKξ ))

JΓ ` pcase r of (s, [p, ps]t) : γ
�Kξ =

{
JsKξ , JrKξ = 0
JsKξ ∨ JtKξ1, JrKξ = q+1

where ξ1 = ξ{p, ps 7→ 1,q}

JΓ ` pfold r of (s, [p, ps,w]t) : γ
�Kξ =


JsKξ , JrKξ = 0(
2+ JreccKξ0 + JtcKξ1,

JspKξ ∨ JtpKξ1
)
, JrKξ = q+1

where rec = pfold y of (s, [p, ps,w]t), ξ0 = ξ{y 7→ q}, ξ1 = ξ{p, ps,w 7→ 1,q,(1,recp)}

Figure 7. Denotational semantics of complexity terms. λλ p. · · · denotes the semantic function that maps p to · · · .

complexity constructors, and we leave it to the denotational seman-
tics to extract the complexities from there. There is a choice to
be made regarding which constructors in the target language have
corresponding constructors in the complexity language. Certainly
fold must be in this list, so that recursive programs are mapped to
recurrences. But whether abstraction and application should have
counterparts, or whether they should be translated into complexity
expressions that directly describe the denotational semantics of λ∗
and ∗, is not completely clear. The choice we have made seems to
allow simpler reasoning about the translated expressions, reasoning
that we should be able to easily formalize in Coq, and which would
also be more familiar to programmers.

Before proceeding to examples, we note that translation pre-
serves type derivations. For a target type context Γ, define ‖Γ‖ =
{(x :‖τ‖) | (x : τ) ∈ Γ}.

PROPOSITION 1. If Γ ` r : τ , then ‖Γ‖ ` ‖r‖ :‖τ‖.

4.1 Examples
We show the results of translating the insertion-sort and map
functions in this section. We freely transform expressions in the
complexity language according to validities in the semantics, for
example adding natural numbers and computing maximums when
possible. The soundness of each such equality or inequality is easily
proved, and so such transformations could easily be incorporated in
a formalized proof that simplifies ‖t‖ into a more amenable form.

4.1.1 Insertion-sort
We start by considering the list-insertion function defined by

ins = λx . λ xs . fold xs of ( x : : nil ,
[y , ys , w ] if x <= y then x : : y : : ys

else y : : w )

and showing that it has a linear running time in the size of its input.
Translating directly yields

‖ins‖= λ∗x,xs.pfold xsp of ((2+ xc,1),
[p, ps,w]dally(4+ xc,(4+ xc,2+ ps)∨ (2+wc,1+wp))).

If we write fins(x,xs) for ‖ins‖∗ x∗ xs, apply the equations for the
denotations of λ∗ and ∗, and use properties of the order on natural
numbers, we have

fins(x,xs) = dally(4+ xc + xsc,pfold xsp of ((3,1),
[p, ps,w]dally(5,

(5,2+ ps)∨ (2+wc,1+wp))))

≤ dally(4+ xc + xsc,pfold xsp of ((3,1),
[p, ps,w](10+wc,(2+ ps)∨ (1+wp)))

To turn this into a recognizable form, set

g(z) = pfold z of
(
(3,1)

[p, ps,w](10+wc,(2+ ps)∨ (1+wp))
)

so that fins(x,xs) = dally(4+xc+xsc,g(xsp)). Rewriting g as a pair
of recurrences (one each for cost and potential) we obtain

gc(0) = 3 gc(q+1) = 13+gc(q)

gp(0) = 1 gp(q+1) = (2+q)∨ (1+gp(q))

Here again we have used the equations from the denotational
semantics of pfold. For example, the expression for gc(q+ 1) is
2+ recc + tc where rec is the recursive call (i.e., g(q)) and

t = (10+wc,(2+ ps)∨ (1+wp))[w 7→ (1,recp)] =

(11,(2+ ps)∨ (1+ recp)).

A straightforward induction establishes g(z)≤ (13z+3,z+1) and
hence fins(x,xs)≤ (13xsp +7+ xc + xsc,xsp +1).

Continuing, we now consider the insertion-sort function defined
by

ins_sort = λ xs . fold xs of ( nil ,
[y , ys , w ] ( insert y w ) )
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〈〈b〉〉= N 〈〈σ→ τ〉〉= 〈〈σ〉〉→‖τ‖ ‖τ‖= N×〈〈τ〉〉= 〈〈τ〉〉�

‖x‖= x

‖c‖= (1,1)

‖r R s‖= (2+‖r‖c +‖s‖c,1)

‖nil‖= (1,0)

‖r :: s‖= (1+‖r‖c +‖s‖c,1+‖s‖p)

‖if r then s else t‖= dally(1+‖r‖c,‖s‖∨‖t‖)
‖λx.r‖= λ∗x.‖r‖
‖rs‖= ‖r‖∗‖s‖

‖case r of (s, [x,xs]t)‖= dally(1+‖r‖c,pcase ‖r‖p of (‖s‖, [p, ps]‖t‖{x,xs 7→ (1, p),(1, ps)}))
‖fold r of (s, [x,xs,w]t)‖= dally(1+‖r‖c,pfold ‖t‖p of (‖s‖, [p, ps,w]‖t‖{x,xs 7→ (1, p),(1, ps)}))

Figure 8. Translation from target types and expressions to complexity types and expressions. c ranges over integer and boolean constants.

Following the approach above, writing fisrt(xs) for ‖ins_sort‖∗xs
and g(z) for pfold z of ((1,0), [p, ps,w] fisrt((1, p),w)), we have

fisrt(xs) = dally(2+ xsc,g(xsp))

gc(0) = 1 gc(q+1) = 2+gc(q)+
(

fins
(
(1,1),(1,gp(q))

))
c

gp(0) = 0 gp(q+1) =
(

fins
(
(1,1),(1,gp(q))

))
p

Using our bound on fins, a proof by induction to show that gp(q)≤ q,
and then this last inequality to simplify the bound on gc(q+1) we
have

gc(0)≤ 1 gc(q+1)≤ 11+gc(q)+13q

gp(0)≤ 0 gp(q+1)≤ 1+gp(q)

from which we conclude g(z) ≤ (13z2 + 11z + 1,z) and hence
fisrt(xs)≤ (13xs2

p +9xsp +3+ xsc,xsp).
Although we don’t often think of the analysis of insertion-sort

involving an analysis of size (something we are forced to do when
working with complexities), in fact such size analyses are usually
implicit. For example, in the standard analysis of insertion-sort, we
usually implicitly make use of the correctness of the algorithm to
assert that the length of ins_sort(xs) is the same as the length
of xs.

It is also worth noting that the analysis of ‖ins_sort‖ only
depends on properties of ‖insert‖, namely that fins(x,xs) ≤ (a ·
xsp + xc + xsc +b,xsp +1). One way to see this is to note that we
could have defined a general fold function

list_fold = λf , xs , a . fold xs of (a ,
[y , ys , w ] ( f y w ) )

and analyzed ‖list_fold‖. The analysis would be in terms of
fc and fp. We could then “plug in” assumptions about fc and fp
to analyze concrete instances of the general fold function such as
insertion-sort. Such assumptions and analyses could be exact or
asymptotic, as the application demands. One can certainly imagine
that such analyses are likely to be important when reasoning about
large modular programs.

4.1.2 Map
Perhaps surprisingly, the analysis of the higher-order map function
defined by

map = λh . λ xs . fold xs of ( nil ,
[y , ys , w ] ( h ( y ) : : w ) )

is more straightforward than for insertion-sort. Again following the
approach above and writing fmap(h,xs) for ‖map‖∗h∗ xs and g(z)

for pfold z of ((1,0), [p, ps,w](4+(hp(p))c,1+wp)) we have

fmap(h,xs) = dally(4+hc + xsc,g(xsp))

gc(0) = 1 gc(q+1) = 7+(hp(1))c +gc(q)

gp(0) = 0 gp(q+1) = 1+gp(q)

The cost of applying h to any element of xs is fixed, because
the size (potential) of every integer is 1; call this cost C. We
conclude that g(z) ≤ ((7 +C)z + 1,z) and hence fmap(h,xs) ≤
((7+C)xsp +5+hc + xsc,xsp).

5. Soundness of the translation
We saw in our examples that the translations of the target-language
programs yield expressions that, modulo some manipulations, de-
scribe the expected upper bounds on the complexities (and hence
evaluation costs) of the original programs. One might worry that
the manipulations themselves are the source of success, rather than
the translation. Our main goal is to show that (in an appropriate
sense), cost(t)≤ cost(J‖t‖K) for all programs. The challenge in do-
ing so is that cost (and potential) is not compositional: cost(r s) is
not defined solely in terms of the cost of subexpressions of r and s.
To get around this, we define a relation between target language
closures and complexities, which we then generalize to target and
complexity expressions. The relation itself is essentially a logical
relation [Mitchell 1996, Ch. 8] that allows us to prove our main
Soundness result by induction on terms. With this in mind, we start
by defining the bounding relation v as follows. Let t be a target-
language expression, ξ a value environment defined on the free
variables of t, σ be a target language type, and χ be a complexity
such that χ ∈ J‖σ‖K. We define t ξ vσ χ if t ξ ↓ vθ implies

• cost(t ξ )≤ cost(χ); and

• vθ vval
σ pot(χ).

The value bounding relation vval relates values to potentials:

• (tt)θ vval
bool 1, (ff )θ vval

bool 1, nθ vval
int 1.

• (n0, . . . ,nk−1)θ vval
int∗ p if k ≤ p.

• (λx.r)θ vval
σ→τ p if whenever zη vval

σ q, then r θ{x 7→ zη} vτ

p(q).

We will usually drop the type-subscript from v and vval. If ξ

and ξ ∗ are value- and complexity- environments respectively, we
write ξ v ξ ∗ to mean that xξ vσ ξ ∗(x) whenever x ∈ Dom ξ ∗ and
ξ ∗(x)∈ J‖σ‖K. If t is a target expression and Γ∗ ` t∗ :τ a complexity
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term, then we write t v Γ∗ ` t∗ : τ to mean that t ξ v Jt∗Kξ ∗

whenever ξ ∗ is a Γ∗-consistent environment and ξ v ξ ∗.
Our main theorem is the following:

THEOREM 2 (Soundness). If Γ ` t : τ , then t v ‖Γ ` t : τ‖.

COROLLARY 3. If ` t : τ , then cost(t {})≤ cost(‖ ` t : τ‖).

The reader may be concerned by the seeming lack of a connec-
tion between any putative value environment ξ under which t may
be evaluated and Γ; in particular, there is no connection between
ξ (x) and Γ(x) for x ∈ fv(t). A short response is that the Sound-
ness Theorem is typically applied only to closed terms (as in the
Corollary) and hence there is no concern, and the reader is free to
accept this and ignore the remainder of this paragraph. A longer
response is that this observation has to do with the fact that our
evaluation semantics places no restrictions upon the value environ-
ment to enforce reasonable “typing.” Indeed, no restrictions can
be placed, as we have not defined a notion of typing for values,
although defining such a notion is not technically difficult. However,
in applying the Soundness Theorem and chasing the definitions, one
is forced to apply it to value environments that assign “reasonable”
values to the variables. For suppose that Γ ` t : τ; t v ‖Γ ` t : τ‖; ξ

is a value environment such that t ξ ↓ vθ ; and that x ∈ fv(t). Since
x∈ fv(t), x∈Dom Γ. Take any ‖Γ‖-consistent environment ξ ∗ such
that ξ v ξ ∗. Suppose that ξ ∗(x) ∈ J‖σ‖K; by the definition of con-
sistency, ‖Γ‖(x) = ‖σ‖ and hence Γ(x) = σ . But in addition, since
xξ vσ ξ ∗(x) and xξ ↓ ξ (x), ξ (x)vval

σ ξ ∗(x). Examining the defi-
nition of vval

σ , we see that this ensures that the “type” of ξ (x) (had
we defined it) must be σ .

Before proving the Soundness Theorem, we establish some
preliminary lemmas. The first three are consequences of definitions
and syntactic manipulation.

LEMMA 4. If t ξ vτ χ then for all χ ′ ∈ J‖τ‖K, t ξ v χ ∨χ ′.

LEMMA 5. If ξ v ξ ∗ and vθ vval q, then ξ{x 7→ vθ} v ξ ∗{x 7→
(1,q)}.

LEMMA 6. JtKξ{x 7→ (a,b)}= Jt{x 7→ (a,y)}]Kξ{y 7→ b} where y
is a fresh variable.

The next two lemmas establish bounds related to recursive
definitions.

LEMMA 7. For all complexity expressions r,

cost(JsKξ
∗)≤ cost(Jpfold r of (s, [p, ps,w]t)Kξ

∗).

Proof. Formally we prove by induction on q that for all complexity
expressions r and environments ξ ∗, if JrKξ ∗ = q, then

cost(JsKξ
∗)≤ cost(Jpfold r of (s, [p, ps,w]t)Kξ

∗).

If q = 0, then the two sides of the inequality are in fact equal.
Suppose JrKξ ∗ = q+1. Then

cost(Jpfold r of (s, [p, ps,w]t)Kξ
∗) =

2+ cost(rec)+ cost(JtKξ
∗{p, ps,w 7→ 1,q,(1,pot(rec))})

where rec = Jpfold y of (s, [p, ps,w]t)Kξ ∗{y 7→ q}. By the induc-
tion hypothesis, cost(JsKξ ∗) ≤ cost(rec), and so the claim fol-
lows.

LEMMA 8. Suppose s v ‖s‖ and t v ‖t‖. Fix ξ v ξ ∗ and let
ξ0 = ξ{y 7→ (n0, . . . ,nk−1)} and ξ ∗0 = ξ ∗{y 7→ q}, where k ≤ q.
Assume y is not free in either s or t. Then

fold y of (s, [x,xs,w]t)ξ0 v
dally(2,Jpfold y of (‖s‖, [p, ps,w]t ′)Kξ

∗
0 )

where t ′ = ‖t‖{x,xs 7→ (1, p),(1, ps)}.

Proof. We prove the claim by induction on k. If k = 0 then the cost
of the fold expression is 2+ cost(sξ0), and the value of the fold
expression under ξ0 is the value to which sξ0 evaluates. The cost
bound is proved by Lemma 7:

cost(fold y of (s, [x,xs,w]t)ξ0)≤ 2+(‖s‖ξ ∗0 )c ≤
2+(Jpfold y of (‖s‖, [p, ps,w]t)Kξ

∗
0 )c

By the induction hypothesis vθ vval (‖s‖ξ ∗0 )p. Since the potential
of dally(2,Jpfold y of (‖s‖, [p, ps,w]t)Kξ ∗0 ) is either (‖s‖ξ ∗0 )p or
(‖s‖ξ ∗0 )p ∨ (Jt ′Kξ ∗∗0 )p for some environment ξ ∗∗0 , we know from
Lemma 4 that the potential bound holds.

Suppose ξ0(y) = (n,ns) with ns = (n0, . . . ,nk−1). Then ξ ∗0 (y) =
q+1 for some q≥ k. By the induction hypothesis we know that

fold y of (s, [x,xs,w]t)ξ{y 7→ ns} v dally(2,rec)

where rec = Jpfold y of (‖s‖, [p, ps,w]t)Kξ ∗{y 7→ q}. So if

(fold y of (s, [x,xs,w]t))ξ{y 7→ ns} ↓ v′ θ ′

then v′ θ ′ vval recp, which means

ξ{x,xs,w 7→ n,ns,v′θ ′} v
ξ
∗{x,xs,w 7→ (1,1),(1,q),(1,recp)}

Let ξ1 = ξ0{x,xs,w 7→ n,ns,v′θ ′} and let ξ ∗1 = ξ ∗0 {p, ps,w 7→
1,q,(1,recp)}. Since y does not occur free in t or t ′, by Lemma
6, t ξ1 v Jt ′Kξ ∗1 . So

cost(fold y of (s, [x,xs,w]t)ξ0)

= 2+ cost(fold y of (s, [x,xs,w]t)ξ{y 7→ ns})
+ cost(t ξ1)

≤ 2+(2+ recc)+
(
Jt ′Kξ

∗
1
)

c

= 2+(Jpfold y of (‖s‖, [p, ps,w]t)Kξ
∗
0 )c

For the potential bound, if (fold y of (s, [x,xs,w]t))ξ0 ↓ vθ , then
t ξ1 ↓ vθ , so vθ vval pot(Jt ′Kξ ∗1 ). By Lemma 4, we have

vθ vval (‖s‖ξ ∗0 )p∨ (Jt ′Kξ
∗
1 )p =

pot(Jpfold y of (‖s‖, [p, ps,w]t)Kξ
∗
0 ) .

Proof of Soundness Theorem. By induction on the derivation of
Γ ` t : τ . Most of the proof is similar to the analogous proof in
[Danner and Royer 2009], so we do just a few cases here. In this
proof we will write ‖s‖ξ ∗ for J‖s‖Kξ ∗.

Suppose Γ` (r :: s) :int∗ and fix ξ v ξ ∗. We have that ‖r :: s‖=
(1+‖r‖c +‖s‖c,1+‖s‖p). For the cost bound,

cost((r :: s)ξ ) = 1+ cost(r ξ )+ cost(sξ )≤
1+ cost(‖r‖ξ ∗)+ cost(‖s‖ξ ∗) = cost(‖r :: s‖ξ ∗).

For the potential bound, if (r :: s)ξ ↓ (n,n0, . . . ,nk−1), then sξ ↓
(n0, . . . ,nk−1), so by the induction hypothesis, pot(‖s‖ξ ∗) = q for
some q≥ k; hence pot(‖r :: s‖ξ ∗) = 1+q≥ 1+ k.

Suppose Γ ` λx.r : σ→ τ , with Γ,x 7→ σ ` r : τ , and fix ξ v ξ ∗.
Verifying the cost bound is trivial, so we focus on the potential
bound. Set p = ‖λx.r‖pξ ∗ = λλv.‖r‖ξ ∗[x 7→ (1,v)]. We must show
that if zη vval

σ q, then r ξ{x 7→ zη} vτ p(q) = ‖r‖ξ ∗{x 7→ (1,q)}.
Since zη vval q, by Lemma 5 ξ{x 7→ zη} v ξ ∗{x 7→ (1,q)}, and
so the claim follows by the induction hypothesis for r.

Suppose Γ ` r s : τ , with Γ ` r : σ→ τ and Γ ` s : σ , and fix
ξ v ξ ∗. By unraveling definitions,

‖rs‖ξ ∗ = dally(1+(‖r‖ξ ∗)c +(‖s‖ξ ∗)c,(‖r‖ξ ∗)p(‖s‖ξ ∗)p).
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Suppose (rs)ξ ↓ vθ by the following evaluation rule:

r ξ ↓ λx.r′ θ1 sξ ↓ wθ2 r′ θ1{x 7→ wθ2} ↓ vθ

(rs)ξ ↓ vθ

We first show that

r′ θ1{x 7→ wθ2} v (‖r‖ξ ∗)p(‖s‖ξ ∗)p. (∗)

Since r ξ ↓ (λx.r′)θ1, we know that (λx.r′)θ1 vval pot‖r‖ξ ∗. Hence
if zη vval p then r′ θ1{x 7→ zη} v (‖r‖ξ ∗)p(p). Since sξ v ‖s‖ξ ∗

and sξ ↓ wθ2, we have that wθ2 vval (‖s‖ξ ∗)p, and (∗) follows.
To establish the cost bound, we compute

cost((rs)ξ ) = 1+ cost(r ξ )+ cost(sξ )+ cost(r′ θ1[x 7→ wθ2])

≤ 1+ cost(‖r‖ξ ∗)+ cost(‖s‖ξ ∗)+
cost

(
(‖r‖ξ ∗)p(‖s‖ξ ∗)p)

)
= cost(‖rs‖ξ ∗)

with the inequality following from the induction hypotheses
and (∗). The potential bound follows from (∗) and the fact that
r′ θ1[x 7→ wθ2] ↓ vθ .

Suppose Γ ` fold r of (s, [x,xs,w]t) : τ and set t ′ = ‖t‖{x,xs 7→
(1, p),(1, ps)} so that

‖fold r of (s, [x,xs,w]t)‖= pfold ‖r‖p of (‖s‖, [p, ps,w]t)′.

Suppose r ξ ↓ ns ; we prove the claim by induction on ns. Suppose
ns = (). We start by computing the cost:

cost(fold r of (s, [x,xs,w]t)ξ )

= 1+ cost(r ξ )+ cost(sξ )

≤ 1+(‖r‖ξ ∗)c +(‖s‖ξ ∗)c

≤ 1+(‖r‖ξ ∗)c +(Jpfold ‖r‖p of (‖s‖, [p, ps,w]t ′)Kξ
∗)c

= cost(‖fold r of (s, [x,xs,w]t)‖ξ ∗).
The second inequality is an equality if ‖r‖p = 0, or follows
from Lemma 7 if ‖r‖p > 0. Turning to the potential bound,
if (fold r of (s, [x,xs,w]t))ξ ↓ vθ then sξ ↓ vθ as well and so
vθ vval pot(‖s‖ξ ∗). If ‖r‖p = 0, this suffices to verify the claim. If
‖r‖p > 0, use Lemma 4. This finishes the case in which r ξ ↓ ().

Suppose r ξ ↓ (n,ns), where ns = (n0, . . . ,nk−1). By the induc-
tion hypothesis for r, ‖r‖pξ ∗ = q+1 for some q ≥ k. Make the
following definitions:

• ξ0 = ξ{y 7→ ns}; ξ ∗0 = ξ ∗{y 7→ q}.
• rect = fold y of (s, [x,xs,w]t).
• rec = Jpfold y of (‖s‖, [p, ps,w]t ′)Kξ ∗0 .

By Lemma 8, rect ξ0 v dally(2,rec). So if rect ξ0 ↓ v′ θ ′ then
v′ θ ′ vval recp. Now set

• ξ1 = ξ{x,xs,w 7→ n,ns,v′θ ′}.
• ξ ∗1 = ξ ∗{p, ps,w 7→ 1,q,(1,recp)}.

By Lemma 5 ξ1 v ξ ∗1 , so by the induction hypothesis for t and
Lemma 6, we have t ξ1 v Jt ′Kξ ∗1 .

For the cost bound when r ξ ↓ (n,ns), we have

cost(fold r of (s, [x,xs,w]t)ξ )

= 1+ cost(r ξ )+ cost(rect
ξ{y 7→ ns})+ cost(t ξ1)

≤ 1+(‖r‖ξ ∗)c +(2+ recc)+(Jt ′Kξ
∗
1 )c

= 1+(‖r‖ξ ∗)c+

cost(Jpfold ‖r‖p of (‖s‖, [p, ps,w]t ′)Kξ
∗)

= cost(‖fold r of (s, [x,xs,w]t)‖ξ ∗)

For the potential bound, suppose (fold r of (s, [x,xs,w]t))ξ ↓ vθ .
Then we must have t ξ1 ↓ vθ as well; hence vθ vval pot(Jt ′Kξ ∗1 ). So
by (4),

vθ vval pot(‖s‖ξ ∗)∨pot(Jt ′Kξ
∗
1 ) =

pot(‖fold r of (s, [x,xs,w]t)‖ξ ∗).

6. Implementation in Coq
We have implemented a subset of the target and complexity lan-
guages in Coq that includes the simply typed λ -calculus with inte-
ger and boolean operations. For this subset we have implemented
the translation function and proof of the Soundness Theorem. The
current development may be found at

http://wesscholar.wesleyan.edu/compfacpub.

When complete, the formalization will provide a mechanism for
certified upper bounds on the cost of programs in the target language.
Since the denotational semantics is built on Coq’s built-in type
system, one can use the formalized Soundness Theorem to establish
a bound on a given target program, then continue to reason in Coq
to simplify the bound, for example establishing a closed form if
desired.

Although we use Coq to formalize the translation, our system
is really a blend of external and internal verification. Our long-
term goal is to be able to translate from programs written in a
language such as SML or OCaml. Such programs would not have
cost information directly associated with them via annotations (such
as done by Danielsson [2003]) or a type system. In this sense, our
approach follows that of CFML [Charguéraud 2010], in which Caml
source code is translated into a formula that can be used to verify
post-conditions.

The main non-trivial aspect of the development is the definition
of the bounding relation. The bounding relation is a simultaneous
recursive definition to two relations,v andvval. In Coq the difficulty
arises in defining vσ→τ in terms of vval

σ→τ (in turn defined in terms
of vτ ), which is not a structural descent on type. We resolve this
by defining subsidiary versions of v and vval that take a natural
number argument, and which are structurally decreasing on that
argument. v and vval are then defined in terms of these relations,
using a numeric value sufficiently high that the inductive definition
is guaranteed to terminate by reaching a base type, rather than a
value of 0 for the numeric argument.7 With this out of the way, the
proof of the Soundness Theorem proceeds more-or-less as described
in this paper.

7. Related work
The core idea of this paper is not new. There is a reasonably extensive
literature over the last several decades on (semi-)automatically
constructing resource bounds from source code. The first work
naturally concerns itself with first-order programs. Wegbreit [1975]
describes a system for analyzing simple Lisp programs that produces
closed forms that bound running time. An interesting aspect of this
system is that it is possible to describe probability distributions on
the input domain (e.g., the probability that the head of an input list
will be some specified value), and the generated bounds incorporate
this information. Rosendahl [1989] proposes a system based on step-
counting functions and abstract interpretation for a first-order subset
of Lisp. More recently the COSTA project (see, e.g., Albert et al.

7 We also implemented a version in which vval is inlined into the definition
of v as an anonymous fixpoint, but found that it became even more tedious
to prove the required lemmas, because we often have to reason specifically
about vval.
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[2007]) has focused on automatically computing resource bounds
for imperative languages (actually, bytecode).

Le Métayer’s [1988] ACE system is a two-stage system that first
converts FP8 programs to recursive FP programs describing the num-
ber of recursive calls of the target program, then attempts to trans-
form the result using various program-transformation techniques to
obtain a closed form. Jost et al. [2010] describe a formalism for auto-
matically infering linear resource bounds on higher-order programs,
provided of course that such bounds are correct, and Hoffmann and
Hofmann [2010] extend this work to handle polynomial bounds.
This system involves a type system analogous to the target-language
system, but in which the types are annotated with variables corre-
sponding to resource usage. Type inference in the annotated system
comes down to solving a set of constraints among these variables.

Here let us delve a little more into the systems mentioned in
the introduction, and just those aspects concerned with a general
analysis of higher-type call-by-value languages. Shultis [1985]
defines a denotational semantics for a simple higher-order language
that models both the value and the cost of an expression. As a part
of the cost model, he develops a system of “tolls,” which play a
role similar to the potentials we define in our work. The tolls and
the semantics are not used directly in calculations, but rather as
components in a logic for reasoning about them. Sands [1990] puts
forward a translation scheme in which programs in a target language
are translated into programs in the same language that incorporate
cost information; several target languages are discussed, including a
higher-order call-by-value language. Each identifier f in the target
language is associated to a cost closure that incorporates information
about the value f takes on its arguments; the cost of applying f to
arguments; and arity. Cost closures are intended to address the same
issue our higher-type potentials do: recording information about
the future cost of a partially-applied function. Van Stone [2003]
annotates the operational semantics for a higher-order language with
cost information. She then defines a category-theoretic denotational
semantics that uses “cost structures” (which are related to monads)
to capture cost information and shows that the latter is sound with
respect to the former. Benzinger [2004] annotates NuPRL’s call-
by-name operational semantics with complexity estimates. The
language for the annotations is left somewhat open so as to allow
greater flexibility. The analysis of the costs is then completed using
a combination of NuPRL’s proof generation and Mathematica.
Benzinger’s is the only system to explicitly involve automated
theorem proving, though Sand’s could also do so.

These last formalisms are closest to ours in approach, but differ
from ours in a key respect: the cost domain incorporates information
about values in the target domain so as to provide exact costs,
whereas our approach focuses on upper bounds on costs in terms
of input size. We are hopeful that our system proves amenable to
analyzing complex programs, but there is much work yet to be done.

8. Conclusions and further work
We have described a static complexity analysis for a higher-order
language with structural list recursion that yields an upper bound on
the evaluation cost of any typeable program in the target language.
It proceeds by translating each target-language program t into a
program ‖t‖ in a complexity language. We prove a Soundness
Theorem for the translation that has as a consequence that the cost
component of ‖t‖ is an upper bound on the evaluation cost of t. By
formalizing the translation and proof of the Soundness Theorem
in Coq, we obtain a machine-checkable certification of that upper
bound on evaluation cost.

The language described here supports only structural recursion
on lists; an obvious extension would be to handle general recursion.

8 I.e., Backus’ language FP [Backus 1978].

This should be straightforward if we require the user to supply a
proof of termination of the program to be analyzed. However, it
should be possible to define the operational semantics of the target
language co-inductively (as done by, e.g., [Leroy and Grall 2009]),
thereby allowing explicitly for non-terminating computations. The
complexity language semantics would then have to be adapted so
that the denotation of a recursive complexity function may be partial;
the foundations for such denotational semantics have already been
carried out by Paulin-Mohring [2009] and Benton et al. [2009].
Indeed, one could then hope to prove termination by extracting
complexity bounds and then proving that these bounds in fact define
total functions.

Although we have adapted our formalism to a few other
inductively-defined datatypes (e.g., binary trees), we suspect that
there are hidden difficulties in generalizing the system to handle
arbitrary inductive definitions. One such difficulty might be, e.g.,
binary trees in which the external nodes are labeled by values of
another inductively-defined datatype. If we wish to consider both
trees and labels as contributing to size (potential), then it seems
that only external nodes labeled by size-0 values have potential 0.
That in turn may make it difficult to develop useful cost bounds
for functions that ignore the labels. Jost et al. [2010] deal with this
issue by annotating the type constructors with resource informa-
tion, and hence automatically account for the resource information
for all types of objects reachable from the root of a given value.
We have investigated a similar approach in our setting, in which
potential types mirror the target language types. For example, we
would define 〈〈σ list〉〉 to be essentially 〈〈σ〉〉 list. This becomes
rather burdensome in practice, and a mechanism for minimizing the
overhead when the generality is not desired would be a necessity.

Another obvious direction would be to handle different evalu-
ation strategies and notions of cost. Compositionality is a thorny
issue when considering call-by-need evaluation and lazy datatypes,
and it may be that amortized cost is at least as interesting as worst-
case cost. Sands [1990], Van Stone [2003], and Danielsson [2003]
address laziness in their work. The call-by-push-value paradigm
[Levy 1999] gives an alternative perspective on our complexity anal-
ysis. Call-by-push-value disinguishes values from computations in a
monadic-like approach under the maxim “a value is, a computation
does.” With this in mind, we might adopt the following statement
with respect to complexities: “potential measures what is, cost mea-
sures what happens.” An alternative presentation of our work might
utilize a call-by-push-value target language to emphasize the distinc-
tion between computation expressions and value expressions and
what those mean for the complexity analysis.

The development in Coq currently works directly with the
expressions of the form ‖t‖. These are moderately messy, as can
be seen from the examples. It would be nice to provide a more
elegant presentation of these complexities along the lines as the
discussion of the examples. In the same vein, it would be very
useful to develop tactics that allow users to transform complexities
into simpler ones, all the while ensuring the appropriate bounds
still hold. Benzinger [2004] addresses this idea, as do Albert et al.
[2011] of the COSTA project. Another relevant aspect of the COSTA
work is that their cost relations use non-determinism where we have
used a maximization operation to handle conditional constructs;
it would be very interesting to see how their approaches play out
in our context. These tactics could be then applied manually or
automatically according to the user’s preferences using Coq’s built
in automation tools. Ultimately we should have a library of tactics
for transforming the recurrences produced by the translation function
to closed (possibly asymptotic) forms when possible.
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