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Abstract

Proof theory is the study of why a proposition is true in a system, as
opposed to the study of which propositions are true. In ordinary classical
logic all proofs of the same proposition are indistinguishable, so its proof
theory is essentially nonexistent. Polarized logic aims to fill this void
as a rich proof theory with classical reasoning principles. In this report
we examine polarized logic from the perspective of Noam Zeilberger’s
judgmental meaning-theories, and we apply this intuition to two different
perspectives on polarization by Girard and Laurent.

1 Introduction

Mathematical logic is inherently concerned about what assertions, or judgments,
are considered true in a particular logical system. Proof theory, on the other
hands, studies why a particular judgment is true. Some systems, including
intuitionistic logic and linear logic, have rich, constructive, and well-organized
proof theories. Others, including classical logic, have only the bare minimum.
And yet, classical logic lies at the foundation of logical reasoning principles.
Without proof theory, what is the meaning of assertions in classical logic?

This question can be answered in two ways. The first approach, polarization,
was developed by Girard (1991) as a logic equivalent in provability to classical
logic, but which has a well-organized proof theory. Girard’s LK logic has had ap-
plications in domains as diverse as game semantics (Laurent, 2002; Laurent and
Regnier, 2003), proof search (Liang and Miller, 2009; McLaughlin and Pfenning,
2009), and evaluation order of programming languages (Levy, 2003; Zeilberger,
2009). It also has interesting connections to linear logic (Laurent, 2002) and
focusing Andreoli (1992), and it explains the “meaning” of classical logic by
considering CPS-like translations.

Another answer to the question takes a more literal and intuitive approach
to meaning. Drawing on a technique of Dummett (1991), Zeilberger (2008)
proposed two ways of attributing meaning to classical propositions themselves.
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The first perspective, called verificationist, takes the meaning of a proposition
to be how it is constructed, via its canonical proofs. In the case of the con-
junction operator ∧, the verificationist perspective leads to the following two
(intuitionistic) rules:

Γ ` A Γ ` B

Γ ` A ∧ B

Γ ` A ∧ B

Γ ` A

Γ ` A ∧ B

Γ ` B

The second perspective, called pragmatist, says that a proposition is defined by
how it is used. This perspective leads to a logically equivalent set of rules which
has a slightly different structure:

Γ ` A Γ ` B

Γ ` A ∧ B

Γ ` A ∧ B Γ,A,B ` C
Γ ` C

Alternatively, it is possible to think of the pragmatist perspective as being
defined by the canonical refutations of a proposition, as opposed to its canonical
proofs.

Zeilberger shows that these two perspectives on the meaning of classical
logic are exactly the refinement polarized logic makes by splitting propositions
into positive and negative fragments. In this paper we examine the field of
polarized logic starting from Zeilberger’s judgmental interpretation in Section 3.
We compare this presentation to Girard’s original formulation of polarization
(1991) in Section 4, and also to Laurent and Regnier’s presentation in terms of
linear logic (2003) in Section 5. We conclude with a short discussion of related
work in Section 6.

But first, we introduce the preliminaries of well-organized proof theory and
the problems with classical logic in Section 2.

2 Preliminaries: Proof Theory

What do Girard (1991) and others mean when they talk about a constructive
or well-organized proof theory? The most essential component of a proof theory
is the principle of cut-elimination. Informally, the cut rule is just the rule of
modus ponens: if a proposition A is true and the proposition A implies B , then
B is also true. Cut-elimination holds for a logic if every proof containing a cut
rule can be replaced by a cut-free proof.

Cut-elimination defines an equivalence relation on proofs, the smallest con-
gruence relation containing the following rule: if a derivation D is replaced by
a derivation D′ in the cut-elimination algorithm, then D = D′.

Classical logic does satisfy cut elimination (Gentzen, 1935), but there are
still other properties we might want in a constructive proof theory. Using in-
tuitionistic logic and linear logic as examples, we can consider some of their
features.

• The word constructive often recalls the disjunction property of intuition-
istic logic, which states that a cut-free proof of A ∨ B is either a proof of
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A or a proof of B . However, linear logic is considered constructive, but
one of its disjunctions, `, does not satisfy the disjunction property. So
the disjunction property does not seem to be an appropriate definition of
a constructive logic.

• Both intuitionistic and linear logics have computational interpretations
via the Curry-Howard correspondence. However, Parigot (1992) and later
Curien and Herbelin (2000) introduced Curry-Howard interpretations for
classical logic, so simply having a computational interpretation is not suf-
ficient for a proof theory.

• Intuitionistic and linear logics also both have interesting denotational se-
mantics which must, necessarily, respect the cut-elimination relation on
proofs. For intuitionistic logic we can consider Hyland and Ong’s fully
abstract game-theoretic model for PCF (2000), and for linear logic we
can consider Girard’s semantics based on coherence spaces (1987). How-
ever, the only semantics of classical logic are degenerate ones, in which
every proof of the same judgment is mapped to the same element in the
semantics.

Girard claims that it is the presence of a non-degenerate denotational semantics
that defines a well-organized proof theory. In the rest of the section, we will
finally introduce classical logic and show why all of its denotational semantics
are degenerate.

2.1 Classical logic

We start off by briefly reviewing Gentzen’s 1935 formulation of classical logic,
called LK. The types of LK include the following: atomic propositions X , truth
T, and falsity F; the unary negation operator ¬; and as the binary connectives
and ∧, or ∨ . We denote propositions with the meta-variable A.

A ::= X | X⊥ | T | F | ¬A | A ∧ B | A ∨ B

Each proposition has a De Morgan dual, written as a meta-operation A⊥.
Figure 1 shows a one-sided sequent calculus formulation of LK. We use

explicit structural rules akin to those of linear logic.
Cut-elimination is a property that states that any proof in LK can be replaced

by an equivalent cut-free proof. It relies primarily on the admissibility of the
cut rule, due to Gentzen (1935).

Lemma 1 (Admissibility of Cut). Given a cut-free proof D1 of ` ∆1,A and a
cut-free proof D2 of ` A⊥,∆2, there is a cut-free proof of ` ∆1,∆2.

Proof Sketch. By induction primarily on A, and secondarily on the structures
of D1 and D2 simultaneously. To get a feeling for the cut-elimination procedure,
we will sketch a few cases.
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` A⊥,A
axiom

` ∆1,A ` A⊥,∆2

` ∆1,∆2
cut

` T
T

` ∆,A⊥

` ∆,¬A
¬

` ∆1,A1 ` ∆2,A2

` ∆1,∆2,A1 ∧A2
∧

` ∆,Ai

` ∆,A1 ∨A2
∨

` ∆

` ∆,A
w

` ∆,A,A

` ∆,A
c

Figure 1: Sequent calculus presentation of LK

For example, suppose D1 is an introduction rule of A = A1 ∧ A2 and D2 is

an introduction rule for A⊥ = A1
⊥ ∨A2

⊥
, as follows:

D1 =
` ∆11,A1 ` ∆12,A2

` ∆11,∆12,A1 ∧A2

D2 =
` A1

⊥,A2
⊥
,∆2

` A1
⊥ ∨A2

⊥
,∆2

Then a cut-free proof of ` ∆11,∆12,∆2 can be constructed from the inductive
hypotheses:

` ∆11,A1

` ∆12,A2 ` A1
⊥,A2

⊥
,∆2

` A1
⊥,∆12,∆2

` ∆11,∆12,∆2

On the other hand, suppose D1 concludes with a weakening rule on A:

D1 =
` ∆1

` ∆1,A

Then a cut-free proof of ` ∆1,∆2 could be constructed by applying the weak-
ening rule for every proposition in ∆2.

2.2 The problem with classical logic

An example by Lafont (Girard et al., 1989, Appendix B) illustrates that all
derivations of the same judgment in LK are equivalent via cut-elimination. Such
a logic can have only degenerate denotational semantics—boolean algebras—and
so we say the proof theory is also degenerate.

Consider any two derivations D1 and D2 of ` ∆. By weakening these can be
transformed into derivations of ` ∆,A and ∆,A⊥, respectively for any propo-
sition A. Applying the cut rule followed immediately by contractions on ∆, we
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obtain a new proof D0 of ` ∆.

D0 =

D1

` ∆

` ∆,A
w

D2

` ∆

` ∆,A⊥
w

` ∆,∆
cut

` ∆
c

By the cut-elimination procedure outlined above, this proof is of equivalent to

D0 =

D1

` ∆

` ∆,∆
w

` ∆
c

which must be equal to D1 itself. However, by the same reasoning we have D0

equivalent to D2; thus D1 and D2 are necessarily equivalent.
Girard’s search for a semantics of LK is one in which not all proofs are iden-

tified. The approach of polarization solves this problem by using information
implicit in a judgment to convey how proofs of that judgment are constructed.
That is, the judgment has meaning other than just its provability. Comple-
menting the meaning of a judgment is the meaning of the propositions in the
judgment. In the next section we will explore different notions of meaning and
what they convey about the shape of a proof.

3 The Meanings of the Connectives

The idea of justifying the laws of logic comes from a series of lectures by Dum-
mett (1991) in which he argues that standard presentations of logic can be
understood by attributing meaning to the connectives in various ways. Dum-
mett proposes that the meaning of a proposition might be defined either by its
canonical proofs or by its canonical refutations.

The so-called verificationist meaning-theory states that the meaning of a
proposition is its definition as given by a canonical proof. Essentially, a propo-
sition is defined by how it is constructed. In the Curry-Howard isomorphism,
these canonical proofs correspond to values.

On the other hand, the pragmatist meaning-theory states that the meaning of
a proposition is a canonical refutation of that proposition. That is, a proposition
is defined by what things it can be used to prove.

Zeilberger (2008) makes Dummett’s justifications of the logical laws explicit
by integrating them with the judgmental method as introduced by Martin-
Löf (1996) and Pfenning and Davies (2001). The resulting logic, which we
call ZU1, judgmentally distinguishes propositions proved via the verificationist
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Formulas A ::= X | T | F | A ∧ B | A ∨ B | ¬A

X triv⇒ X triv

A false⇒ ¬A triv

· ⇒ Ttriv

∆1 ⇒ A1 triv ∆2 ⇒ A2 triv

∆1,∆2 ⇒ A1 ∧A2 triv

∆⇒ Ai triv

∆⇒ A1 ∨A2 triv

X absurd⇒ X absurd

A true⇒ ¬Aabsurd

· ⇒ Fabsurd

∆⇒ Ai absurd

∆⇒ A1 ∧A2 absurd

∆1 ⇒ A1 absurd ∆2 ⇒ A2 absurd

∆1,∆2 ⇒ A1 ∨A2 absurd

Figure 2: Direct proofs and refutations

meaning-theory from propositions proved via the pragmatist meaning-theory.
Verificationist judgments have the form ∆ ⇒ A triv, which means that A is
“trivially” true from ∆. Pragmatist judgments have the form ∆ ⇒ Aabsurd,
which means that A is directly “absurd” from ∆. We give a presentation of
these judgments in Figure 2.2

However, direct proofs and refutations are not enough to express all rea-
sonable classical proofs. For this we introduce two new judgments, A false
and A true, which state, respectively, that there is a contradiction of A triv
and A false respectively. Thus a proof of A false is an instance of intuitionis-
tic proof of negation—assume A triv and prove a contradiction. On the other
hand, a proof of A true is an instance of classical proof by contradiction—
assume Aabsurd and derive a contradiction.

∀(∆⇒ A triv) : Γ,∆ ` contra

Γ ` A false

∀(∆⇒ Aabsurd) : Γ,∆ ` contra

Γ ` A true

A contradiction simply means that there is some proposition that is both trivial
and false, or both true and absurd.

Γ1 ` A triv Γ2 = A false

Γ1,Γ2 ` contra

Γ1 = A true Γ2 ` Aabsurd

Γ1,Γ2 ` contra

1Zeilberger Unity. Zeilberger (2008) does not name the logic presented in his paper, but
he calls the associated calculus CU for the Calculus of Unity, in reference to Girard’s Logic
of Unity (1993) (LU). Girard’s system is quite different from ZU, but has similar goals: to
combine classical, intuitionistic, and linear logics in a single system.

2In Zeilberger’s presentation, propositions are partitioned into positive and negative frag-
ments, and distinguished using syntax akin to linear logic. Positive propositions are used
in trivial and false judgments, and negative propositions are used in absurd and true judg-
ments. We will revisit this notation later in this paper, but for now stick with unpolarized
propositions.
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· ` ·

Γ1 ` X triv Γ2 ` ∆

Γ1,Γ2 ` X triv,∆

Γ1 ` A false Γ2 ` ∆

Γ1,Γ2 ` A false,∆

Γ1 ` A true Γ2 ` ∆

Γ1,Γ2 ` A true,∆

Γ1 ` A false Γ2 ` ∆

Γ1,Γ2 ` A false,∆

Figure 3: Context judgment

Despite the awkward presentation of this rule, Zeilberger prove the more general
form as well: that if Γ1 ` A triv and Γ2 ` A false then Γ1,Γ2 ` contra.

Finally, we use the notation Γ ` A triv to mean that there is a direct proof
∆ ⇒ A triv requiring hypotheses ∆, and that Γ is sufficient to prove every
element of ∆. A similar justification exists for Γ ` Aabsurd. The judgment
Γ ` ∆ is defined in Figure 3.

∆⇒ A triv Γ ` ∆

Γ ` A triv

∆⇒ Aabsurd Γ ` ∆

Γ ` Aabsurd

This paper’s presentation of ZU uses explicit linearity, which means that all
hypotheses are used exactly once, but that they can be explicitly weakened and
contracted:

Γ ` J ′

Γ, J ` J ′
Γ, J , J ` J ′

Γ, J ` J ′

This is in contrast to Zeilberger’s presentation, which mixes explicit and implicit
uses of linearity. In our setting, the explicit linearity throughout makes it easier
to understand the difference between direct and indirect proofs.

3.1 Modular extensions of ZU

The rules for the judgments Γ ` J are in some sense the meaning of those
judgments; they should not change under extensions of the logic. The meaning of
the connectives, on the other hand, does change under extensions, but these are
given exclusively by the judgments ∆⇒ J . To add a new connective, therefore,
it suffices to give its definition in terms of ∆⇒ A triv and Γ⇒ Aabsurd; the
meanings of A false and A true are thus automatically inferred.

In this section we add implication to obtain what is known as full propo-
sitional classical logic. Direct proofs of A → B will just be direct proofs of
¬ (A ∧ ¬B), while direct refutations will be direct refutations of ¬A ∨ B .

A ∧ ¬B false⇒ A→ B triv

∆⇒ B absurd

A true,∆⇒ A→ B absurd

Notice that since negation does not distribute isomorphically with ∧ and ∨ ,
the two interpretations are not equivalent in LC, but they give two different
meanings to the implication operator.
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3.2 Fragments of ZU

The judgmental presentation makes it clear that there are two different kinds
of “truthfulness” and two different kinds of “falsity,” but it is not yet obvious
what is the relationship between the two.

Zeilberger points out that intuitionistic logic is a special case of ZU in which
the judgments are restricted to A triv, A false, and contra. We call this the
positive fragment. In it, negation introduction is allowable by the false rule, but
double negation elimination (i.e. the true rule) is not. Zeilberger proves that a
judgment J holds if |J | holds intuitionistically, where

|A triv| = A |A false| = ¬A |contra| = F.

On the other hand, the negative fragment consists of the judgments A true,
Aabsurd, and contra. This fragment allows double negation elimination by
true judgment, but does not allow for the usual negation introduction. This
fragment has been independently studied: Urbas’ dual intuitionistic logic (1996).

As the names suggest, the positive and negative fragments are in duality with
each other. Zeilberger defines a meta-operation J⊥ on judgments as follows:

(A triv)
⊥

= A⊥ absurd (A false)
⊥

= A⊥ true

(A true)
⊥

= A⊥ false (Aabsurd)
⊥

= A⊥ triv

where A⊥ is defined as expected by De Morgan duality. It is easy to see that
Γ ` J if and only if Γ⊥ ` J⊥.

In order to obtain classical reasoning principles in ZU, we must surely include
both the positive and the negative fragments. But even further, there must be
a way to unify proofs by contradiction of the type A true with direct proofs
A triv, and vice versa. We do this by adding shift rules that embed indirect
proofs into direct proofs, and indirect refutations into direct refutations, as
follows:

A true⇒ ↓A triv
↓

A false⇒ ↑Aabsurd
↑

The shift operators conclude the definition of ZU. The relationships between
negation, duality, and the shift operators can be summarized nicely in Figure 4,
reproduced from Zeilberger (2008).

3.3 Derived rules

In this section we will derive inference rules Γ ` J for each connective, to better
understand what the other judgments false and true mean in each case. To get
a handle on what proofs in ZU actually look like in practice, we can derive some
rules for the false and true judgments that look more familiar. In the process
we will use the following properties from Zeilberger (2008):

• (Identity) If J ∈ Γ then Γ ` J .

• (Context Identity) If ∆⇒ J then ∆ ` J .
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A triv A false

A true Aabsurd

−⊥

¬

↓

¬

↑

Figure 4: Relationship between judgments (Zeilberger, 2008)

• (Reduction+) If Γ1 ` A triv and Γ2 ` A false then Γ1,Γ2 ` contra.

• (Reduction−) If Γ1 ` A true and Γ2 ` Aabsurd then Γ1,Γ2 ` contra.

• (Substitution) If Γ1 ` J1 and Γ2, J1 ` J2 then Γ1,Γ2 ` J2.

Atomic propositions, F and T. By examination there is no context ∆ such
that ∆ ⇒ Ftriv; therefore Γ ` F false is vacuously true for any Γ. On the
other hand, · ⇒ Fabsurd so we have Γ ` Ftrue as long as Γ ` contra. We
can thus generate the following rules for the four inferred rules for F:

(no rule for triv)
Γ ` F false

Γ ` contra

Γ ` Ftrue · ` Fabsurd

By duality, we can immediate generate an equivalent set of rules for T:

· ` Ttriv

Γ ` contra

Γ ` Tfalse Γ ` Ttrue
(no rule for absurd)

Binary operators, ∧ and ∨ . We start by asking, when does Γ ` A1 ∧
A2 false hold? Notice that ∆ ⇒ A1 ∧ A2 triv only if ∆ = ∆1,∆2 such that
∆1 ⇒ A1 triv and ∆2 ⇒ A2 triv. Then to show Γ,∆ ` contra, it suffices to
show that Γ,A1 triv,A2 triv ` contra. Thus we have the following derived
rule:

Γ,A1 triv,A2 triv ` contra

Γ ` A1 ∧A2 false

Compared to the absurd rule, the false rule has more flexibility in how its
resources are used:

Γ ` Ai absurd

Γ ` A1 ∧A2 absurd
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By duality, these rules mirror the “truth” rules for ∨ :

Γ ` Ai triv

Γ ` A1 ∨A2 triv

Γ,A1 absurd,A2 absurd ` contra

Γ ` A1 ∨A2 true

Next, to conclude Γ ` A1 ∧A2 true we must prove Γ,∆ ` contra whenever
∆ ⇒ A1 absurd or ∆ ⇒ A2 absurd. If both Γ ` A1 true and Γ ` A2 true
hold (for the same Γ), then the result is assured. Thus we have the following
derived rule:

Γ ` A1 true Γ ` A2 true

Γ ` A1 ∧A2 true

Notice how this rule differs from the rule for A1 ∧A2 triv:

Γ1 ` A1 triv Γ2 ` A2 triv

Γ1,Γ2 ` A1 ∧A2 triv

The former uses the same context, Γ, in both hypotheses, while the later uses
different contexts and concatenates them. By weakening and contraction these
presentations are equivalent in provability, but again the judgmental method
highlights how hypotheses are actually used in each proof.

By duality we complete the picture for the connective ∨ :

Γ ` A1 false Γ ` A2 false

Γ ` A1 ∨A2 false

Γ1 ` A1 absurd Γ2 ` A2 absurd

Γ1,Γ2 ` A1 ∨A2 absurd

Negation, ¬. A direct proof of ¬A is simply an indirect refutation of A, and
vice versa for direct refutations:

Γ ` A false

Γ ` ¬A triv

Γ ` A true

Γ ` ¬Aabsurd

The indirect judgments say that assuming the hypothesis leads to a contradic-
tion.

Γ,A false ` contra

Γ ` ¬A false

Γ,A true ` contra

Γ ` ¬A true

Implication, →. The direct proofs and refutations we defined for → cor-
respond to two different interpretations of implication in classical logic. The
positive interpretation corresponds to ¬ (A ∧ ¬B), while the negative interpre-
tation corresponds to ¬A ∨ B . Though the direct constructions look a little
mysterious, we can recover the usual interpretations of implication through in-
ferred rules.

Γ,A triv ` B triv

Γ ` A→ B triv

Γ1 ` A triv Γ2 ` B false

Γ1,Γ2 ` A→ B false

The inferred absurd rule has a very similar structure to the false rule, but
the indirect proof of A → B true recalls the dual intuitionistic proof strategy
intrinsic to the negative fragment.

Γ,B absurd ` Aabsurd

Γ ` A→ B true

Γ1 ` A true Γ2 ` B absurd

Γ1,Γ2 ` A→ B absurd
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Shift operators, ↓ and ↑. A direct proof of ↓A triv is clearly just an indirect
proof of A true, but what is an indirect refutation of ↓A false? It is easy to
derive that the judgment holds provided A true leads to a contradiction.

Γ ` A true

Γ ` ↓A triv

Γ,A true ` contra

Γ ` ↓A false

Notice that this is equivalent to saying ¬A true. By duality, ↑A true is equiv-
alent to ¬A false.

As a consequence, Zeilberger (2008) shows that we also have ¬¬A triv ≡
↓↑A triv and ¬¬Aabsurd ≡ ↑↓Aabsurd.

4 Introducing Polarity

In the previous section we saw how the structure of direct proofs of the form
A triv differs from the structure of indirect proofs of the form A true. Girard
(1991) proposes another way to distinguish these classes of proofs: from the
structure of the proposition itself.

Girard (1991)’s work starts by partitioning the propositions of classical logic
into two parts: positive and negative. Intuitively, positive propositions have
direct proofs and negative propositions have indirect proofs. We will be working
in a one-sided sequent calculus, so refutations of A are subsumed by proofs of
A⊥.

In the following section, we denote the dual of an atomic type X as X and
extend this syntax to T and F. That is, the dual of T is written T and is
distinguished from F.

The polarity of a formula is computed by the following algorithm.

1. Atomic formulas X , T, and F are positive;

2. The duals of atomic formulas, X , T, and F, are negative;

3. The polarity of compound formulas are dictated by the following chart:

A B A ∧ B A ∨ B ¬A
+ + + + +
− + + − −
+ − + −
− − − −

We use P to refer to a positive proposition, and N to a negative proposition.
An alternative presentation of the positive/negative distinction is axiomatic, as
follows:

P := X | T | F | P1 ∧ P2 | N ∧ P | P ∧N | P1 ∨ P2 | ¬P
N := X | T | F | N1 ∧N2 | N ∨ P | P ∨N | N1 ∨N2 | ¬N

Notice that negation does not change the polarity of a formula, although De Mor-
gan dualization does.
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` P⊥; P
axiom

` ∆; P

` ∆,P ; ·
dereliction

` ∆1; P ` P⊥,∆2; Θ

` ∆1,∆2; Θ
cut-P

` ∆1,N ; · ` N⊥,∆2; Θ

` ∆1,∆2; Θ
cut-N

` ∆; Θ

` A,∆; Θ
weakening

` A,A,∆; Θ

` A,∆; Θ
contraction

Figure 5: LC (Girard, 1991)

4.1 LC

Girard (1991) introduces the sequent calculus LC in order to distinguish direct
proofs from indirect proofs, since the distinction is not possible in LK directly.3

The key contribution of LC is the stoup Θ, a context consisting of either zero or
one positive propositions. Judgments have the form ` ∆; Θ, and the presence of
a non-empty stoup focuses the judgment on the positive proposition P . Judg-
ments of this form correspond to direct proofs of P triv in Zeilberger’s system.
The context ∆ may contain both positive and negative propositions. Although
indirect proofs (of the form A true) are also focused in Zeilberger’s ZU, in LC
negative propositions remain unfocused.

Other variations of these focused systems have been presented in the liter-
ature (Andreoli, 1992; Liang and Miller, 2009). The purpose of focusing is to
restrict the ways to construct a proof so that, while sound and complete with
respect to the unfocused system, the focused derivations collapse equivalent
unfocused derivations to a more normal form.

The basic rules of LC are reproduced in Figure 5. The full presentation is
rather unwieldy, due to the large number of inference rules for each connective.
In fact, for each connective we need to provide distinct rules for each combination
of the polarities.

Starting off with the units, there is exactly one direct proof of Θ, and an
indirect proof of F from any hypotheses. On the other hand, if we can prove
one of ∆ or Θ then we can add T to the collection of indirect proofs.

` ·;T ` ∆,F; Θ

` ∆; Θ

` ∆,T; Θ

For ∧, a direct proof is constructed if at least one of its subpropositions has

3In fact, Girard framed this in terms of a semantics of correlation spaces, an algebraic
structure based loosely on the coherence space denotational semantics of linear logic. In LC,
indirect proofs correspond to cliques of correlation spaces, while direct proofs correspond to
the special case of central cliques.
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a direct proof:

` ∆1; P1 ` ∆2; P2

` ∆1,∆2; P1 ∧ P2

` ∆1; P ` ∆2,N ; ·
` ∆1,∆2; P ∧N

` ∆1,N ; · ` ∆2; P

` ∆1,∆2; N ∧ P

An indirect proof, on the other hand, must have indirect proofs of its subpropo-
sitions, but the rest of the conclusions can be duplicated, just as in the proofs
of A ∧ B true.

` ∆,N1; Θ ` ∆,N2; Θ

` ∆,N1 ∧N2; Θ

On the other hand, A∨B has a direct proof if either A or B does. If not, it
suffices to give an indirect proof for either A or B , concurrently.

` ∆; Pi

` ∆; P1 ∨ P2

` ∆,P ,N ; Θ

` ∆,P ∨N ; Θ

` ∆,N ,P ; Θ

` ∆,N ∨ P ; Θ

` ∆,N1,N2; Θ

` ∆,N1 ∨N2; Θ

Compare the negative disjunction rules to the corresponding rule in ZU:

Γ,A1 absurd,A2 absurd ` contra

Γ ` A1 ∨A2 true

There are similar rules for negation. There exists a direct proof of ¬A if
there is an indirect proof of A⊥. In addition, there is an indirect proof of ¬A if
there is an indirect proof of A⊥.

` ∆,P⊥; ·
` ∆;¬P

` ∆,N⊥; Θ

` ∆,¬N ; Θ

Compare these to the rules for negation in ZU:

Γ ` A false

Γ ` ¬A triv

Γ,A true ` contra

Γ ` ¬A true

4.2 Dereliction and promotion in the stoup.

The dereliction rule in Figure 5 unfocuses a proposition, and we can achieve
the opposite effect through a derived rule. Notice that it is always possible to
replace a formula by an equivalent one of a particular polarity. We write ↓A
for A ∧ T, which is positive and equivalent to A, and ↑A for A ∨ T, which is
negative and equivalent to A. The derived rule for ↓A is a kind of promotion for
negative propositions, while the derived rule for ↑A does not change the focus
of the proposition.

` ∆,N ; · ` ·;T
` ∆; N ∧T

` ∆; ↓N

` ∆,P ; Θ

` ∆,P ,T⊥; Θ

` ∆,P ∨T⊥; Θ

` ∆, ↑P ; Θ

Indeed, these derived rules correspond to the ones in ZU of the same name.
More precisely, the ↑ rule embeds indirect refutations into direct refutations
(both unfocused in LC), and the ↓ rule embeds indirect proofs into direct proofs.
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4.3 Semantics

Girard’s goal in developing LC was to construct a (non-degenerate) denotational
semantics for it, which we briefly sketch here. Inspired by the coherence space
semantics for linear logic (Girard, 1987), the denotational semantics for LC is
based on correlation spaces, which consist of a coherence space together with
some additional clique-like structure. Derivations are interpreted as cliques
between correlation spaces, and in particular derivations with a non-empty stoup
are interpreted as central cliques, having additional structure. These central
cliques distinguish between proofs that in LK would be equivalent.

Girard (1991) proves that the denotation is invariant under cut-elimination
and is non-degenerate, meaning that there are two proofs of the same sequent
in LC that have different interpretations under the semantics.

4.4 Translation into LC

Following Zeilberger (2008), we can make the relationship between ZU and LC
formal with a sound and complete translation between the two logics.4

First, define maps (−)+ and (−)− on ZU propositions; the result will be an
LC proposition of the appropriate polarity.

(T)+ = T (T)− = F

(F)+ = F (F)− = T

(A ∧ B)+ = A+ ∧ B+ (A ∧ B)− = A− ∧ B−

(A ∨ B)+ = A+ ∨ B+ (A ∨ B)− = A− ∨ B−

(↓A)+ = A− ∧T (↓A)− = A−

(↑A)+ = A+ (↑A)− = A+ ∨T

(¬A)+ = ¬A+ (¬A)− = ¬A−

(A→ B)+ = ¬ (A+ ∧ ¬B+) (A→ B)− = ¬A− ∨ B−

It is not necessary to have an explicit implication operator in LC; instead we

simply unfold the positive and negative interpretations. Notice that (A+)
⊥

=

(A⊥)− and (A−)
⊥

= (A⊥)+.

Next, every ZU judgment Γ ` J will be mapped to a judgment ` [Γ]
⊥

; ↓[J ]
where [−] is defined as follows:

[A triv] = A+

[A false] = (A⊥)−

[A true] = A−

[Aabsurd] = (A⊥)+

[contra] = ·
4Zeilberger (2008) defines a translation to a different focused logic, which we extend here

to LC.
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As expected, direct proofs and refutations are mapped to positive propositions,
although the refutations are dualized first. That is, a direct refutation of A
is simply a direct proof of A⊥. Similarly, indirect proofs and refutations are
negative.

We next show that this translation is in fact sound and complete.

Theorem 2.

1. (Soundness) If Γ ` J in ZU then ` [Γ]
⊥

; ↓[J ] in LC.

2. (Completeness) If ` [Γ]
⊥

; ↓[J ] in LC then Γ ` J in ZU.

For soundness, we need a lemma for each judgment except contradiction.
For simplicity, we consider only the positive judgments; the others are addressed
dually.

Lemma 3. If ∆⇒ A triv then ` [∆]
⊥

; A+

The rule for the false judgment is more involved.

Lemma 4. Suppose that for all ∆1 ⇒ A1 triv, . . . ,∆n ⇒ An triv we have

` [Γ]
⊥
, [∆1]

⊥
, . . . , [∆n ]

⊥
. Then [Γ]

⊥
, (A1

⊥)−, . . . , (An
⊥)−.

The proof is by induction on |A1|+ · · ·+ |An |.
The following variation on the cut rule is immediate from the derived ↑ rule.

Lemma 5. If ` Γ1; ↓[J ] and ` [J ]
⊥
,Γ2; Θ then ` Γ1,Γ2; Θ.

Proof of Theorem 2 (Soundness). The proof is fairly straightforward by induc-
tion on the inference rule. In the triv judgment case, Γ ` A triv only if
there is some ∆ such that Γ ` ∆ and ∆ ⇒ A triv. But if Γ ` ∆ we can
write ∆ = J1, . . . , Jn and Γ = Γ1, . . . ,Γn such that for each i, Γi ` Ji .
By induction therefore we have the following judgments: ` [Γi ]

⊥
; ↓[Ji ] and

` [J1]
⊥
, . . . , [Jn ]

⊥
; A+. By Lemma 5 these combine to ` [Γ1]

⊥
, . . . , [Γn ]

⊥
; A+ as

desired.
In the false judgment case, Γ ` A false provided that for all ∆ such that

∆ ⇒ A triv we have Γ,∆ ` contra. For each such ∆ we have ` [Γ⊥], [∆⊥]; ·
by the induction hypothesis, and so by Lemma 4 we know ` [Γ⊥], (A⊥)−. But
↓[A false] = (A⊥)− ∧T. We thus obtain the following derivation:

` [Γ⊥], (A⊥)−; · ` ·;T
` [Γ⊥]; (A⊥)− ∧T

The proof of completeness follows from the following lemma:

Lemma 6.

1. If ` [Γ]
⊥

; A+ then Γ ` A triv.
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2. If ` [Γ]
⊥
,A−; · then Γ ` A true.

3. If ` [Γ]
⊥

; A+ then Γ ` A⊥ absurd.

4. If ` [Γ]
⊥
,A−; · then Γ ` A⊥ absurd.

Proof. Items (3) and (4) follow trivially from (1) and (2) considering that for

any judgment, [J ] = [J⊥]. Thus if ` [Γ]
⊥

; A+ as in item (3), then ` [Γ⊥]
⊥

; A+

and so by (1) we have Γ⊥ ` A triv. By duality in ZU, we know Γ ` A⊥ absurd,
as expected.

The proof of (1) and (2) follow straightforwardly by induction on the LC
derivation.

Proof of Theorem 2 (Completeness). Consider two cases. If [J ] is a positive

proposition P , then from ` [Γ]
⊥

; ↓P we can obtain ` [Γ]
⊥

; P from the proof of
` ↑P⊥; P . The result follows from Lemma 6.

Similarly, if [J ] is a negative N , then from ` [Γ]
⊥

; ↓N we can obtain `
[Γ⊥],N by cutting against the proof ↑N⊥,N ` ·.

It is also worth pointing out the following two completeness results inspired
by Zeilberger (2008) relating unfocused classical logic LK to both ZU and LC:

Proposition 7 (Zeilberger, 2008). If ` [Γ]
⊥

in LK then Γ ` contra in ZU.

Noticed that LK only corresponds to ZU up to unfocused judgments.
The corresponding theorem for LC follows naturally:

Proposition 8. If ` ∆ is classically provable in LK then ` ∆; · has a focusing
proof in LC.

Proof. By induction on the LK derivation. Alternatively, let (|A|) be any expan-
sion of LK types to ZU judgments, in the sense of Danos et al. (1995), meaning
that [(|A|)] = A for every LK type A. Then since ` ∆ it is also the case that

` [(|∆|)]. By Proposition 7 therefore, (|∆|)⊥ ` contra, so by the soundness of
Theorem 2 we have ` [(|∆|)]; · as a judgment in ZU, as expected.

5 A Linear Logic Perspective

In Zeilberger’s judgmental interpretation, the positive and negative perspectives
provide two interpretations of the same connectives. In Girard’s work, the
polarities partition the connectives into positive and negative fragments. A
different perspective of this fragmentation is to treat every connective as having
two copies—a positive copy and a negative copy. To distinguish the copies, we
use notation from linear logic as summarized in the following chart:
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Operator Positive Copy Negative Copy

T 1 ⊥
∧ ⊗ `
F 0 >
∨ ⊕ &

¬ +¬ -¬
shift ↓/! ↑/?

In the spirit of linear logic, Laurent and Regnier use the notation ! and ? in
place of the shift operators ↓ and ↑ respectively in their presentation of polarized
logic, LLP. There are both advantages and disadvantages to their presentation.
On the one hand, it draws further attention to the many similarities between
linear logic and polarized logic. On the other hand, it confuses the fact that
propositions are not inherently linear in LLP–they always admit weakening and
contraction. We will primarily use the shift notation to remain consistent to the
previous presentations, but we will recall the connections to the exponentials
often.

The types of LLP are as follows:

P ::= 1 | P ⊗ P | 0 | P ⊕ P | +¬P | ↓N

N ::= ⊥ | N ` N | > | N & N | -¬N | ↑P

The difference between Girard’s connectives and Laurent and Regnier’s is thus
that the positive/negative copies operate exclusively on positive/negative sub-
propositions, respectively. In order to change the polarity of a proposition, one
of the shift connectives must explicitly be applied.

The inference rules for LLP are given in Figure 6. They are almost identical
to Girard’s linear logic, with a few structural exceptions. For one, weakening
and contraction are applicable on any negative proposition, not just propositions
of the form ? A. For another, the ↓ rule promotes a positive proposition when all
the other hypotheses are negative. When ↓ is equated with !, this again means
that all negative propositions are treated like ? A propositions. In Section 5.2
we will define a translation from LLP into linear logic, and we will need to make
this correspondence precise.

Although there is no designated stoup in the judgments of LLP, we do have
the following property:

Proposition 9. In any LLP derivation there is at most one positive proposition.
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` P⊥,P

` ∆1,P ` P⊥,∆2

` ∆1,∆2

` N ,N
` N , ↓N

` ∆,P

` ∆, ↑P

` ∆

` N ,∆

` N ,N ,∆

` N ,∆

` 1

` ∆

` ⊥,∆

` ∆1,P1 ` ∆2,P2

` ∆1,∆2,P1 ⊗ P2

` N1,N2,∆

` N1 ` N2,∆

` N ,>

` ∆,Pi

` ∆,P1 ⊕ P2

` N1,∆ ` N2,∆

` N1 & N2,∆

` N ,P⊥

` N , +¬P

` ∆,N⊥

` ∆,
-¬N

Figure 6: LLP (Laurent and Regnier, 2003)

5.1 Translations into LLP

The goal is to make the relationship formal again. Define a translation 〈A〉
which takes LC propositions to LLP propositions of the same polarity.

〈T〉 = 1 〈T〉 = ⊥
〈F〉 = 0 〈F〉 = >

〈P1 ∧ P2〉 = 〈P1〉 ⊗ 〈P2〉 〈P1 ∨ P2〉 = 〈P1〉 ⊕ 〈P2〉
〈N ∧ P〉 = ↓〈N 〉 ⊗ 〈P〉 〈N ∨ P〉 = 〈N 〉 ` ↑〈P〉
〈P ∧N 〉 = 〈P〉 ⊗ ↓〈N 〉 〈P ∨N 〉 = ↑〈P〉 ` 〈N 〉
〈N1 ∧N2〉 = 〈N1〉 & 〈N2〉 〈N1 ∨N2〉 = 〈N1〉 ` 〈N2〉
〈¬P〉 = ↓〈P〉⊥ = ! 〈P〉⊥ 〈¬N 〉 = ↑〈N 〉⊥ = ? 〈N 〉⊥

Again this translation is sound and complete.

Proposition 10.

1. (Soundness) If ` ∆; Θ in LC then ` 〈↑∆〉, 〈Θ〉 in LLP.
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2. (Completeness) If ` 〈∆〉, 〈Θ〉 in LLP then ` ∆; Θ in LC.

Proof. For soundness, the proof is by induction on the LC derivation.
Completeness can be proved by induction on the LLP derivation, but we can

alternatively sketch a more roundabout proof showing the interconnectedness
of all the systems we have seen so far. Consider that every proof of LLP can
easily be “erased” to a classical (LK) skeleton along the lines of Danos et al.
(1995). We write this erasure function on propositions to be |−|. It is quite
easy to see however that for any LC type, |〈A〉| = A. Thus the LK proof has
the form ` ∆,Θ, and by the completeness of focusing (Proposition 8) there is
an LC proof ` ∆; Θ.

5.2 Comparing classical and polarized logic

Girard’s classification of types into polarities gives one polarization strategy for
LK types, but it is not the only one. The simplest strategies translate all types
as either positive or negative. Laurent and Regnier (2003) introduce two such
translations, which we write here as 〈−〉+ and 〈−〉−.5

In fact, the translations given by Laurent and Regnier factor into Girard’s
translation plus the positive and negative coercions given in Section 4:

〈A〉+ = 〈A+〉 〈A〉− = 〈A−〉

The defining feature of the negative translation is that 〈A→ B〉− = ! 〈A〉− (
〈B〉− when we write ! for ↓:

〈(A→ B)−〉 = 〈¬A− ∨ B−〉
= 〈¬A−〉 ` 〈B−〉
= ↑〈A−〉⊥ ` 〈B−〉

This corresponds to Girard’s original translation of intuitionistic logic (LJ) into
linear logic (LL) (Girard, 1987). Indeed, Laurent and Regnier (2003) prove that
Girard’s translation combined with a CPS transformation from LK is the same
as the negative translation 〈−〉− composed with a CPS-like transformation from
LLP to LL:

LK LJ

LLP LL

CPS

! A ( B〈−〉−

CPS

Furthermore, they show that this relationship holds for multiple call-by-name
CPS translations, for example by Plotkin (1975) and Krivine (2002).

5In their paper, Laurent and Regnier (2003) use the plain notation (−)+ and (−)− for this
operation.
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Plotkin’s translation. Following Laurent and Regnier (2003), we will sketch
the translations on the fragment of classical logic restricted to atomic proposi-
tions and implication. This fragment types the λµ-calculus (Parigot, 1992), a
classically-typed calculus that Laurent and Regnier use to define their transla-
tions on proofs. In fact, starting with different sets of atomic primitives restricts
the possible expressible translations—for an overview of such CPS translations
on the full set of primitives, see Ferreira and Oliva (2011).

Plotkin’s translation is based on the following mapping of propositions:

X • := X (A→ B)• := ¬¬A• → ¬¬B•

where ¬A in intuitionistic logic is just A → 0. It is then the case that A is
provable classically in LK if and only if A• is provable intuitionistically in LJ.

In fact, Laurent and Regnier refine the type of A• with a linear negation
type ¬0A, and Plotkin’s translation satisfies (A→ B)• := ¬¬0A→ ¬¬0B . We
leave the details to Laurent and Regnier (2003).

Meanwhile, it is necessary to define a map LLP → LL which is compatible
with Plotkin’s translation in Laurent and Regnier’s commuting square. This
map is called the box translation, written (−)b, and is defined in Figure 7. The
box translation adds a bang operator ! around each positive LLP proposition, and
adds a why not operator ? around each negative LLP proposition. As expected
from Laurent and Regnier’s conflation of the two ideas, the shift operators are
mapped to the appropriate exponential.

The invariant of having an exponential at the front of Ab for every A means
that all negative propositions are explicitly subject to weakening laws and all
positive propositions are explicitly duplicable (meaning P ( P ⊗P is provable).

Laurent and Regnier show that for any LK type A we have

(〈A〉−)b = ?G (A•)

where G (A) is Girard’s translation ! A ( B from intuitionistic logic LJ to linear
logic LL. They also extend the translations to derivations and prove that they
too commute.

Krivine’s translation. The disadvantage of Plotkin’s translation and the
corresponding box translation is that they introduce many superfluous negation,
! and ? operators. Both computationally and logically we have motivation to
find a more efficient presentation. One solution, due to Krivine (2002), pushes
all negations to the atomic propositions:

X ∗ := ¬X (A→ B)∗ := A∗ → B∗

It is then the case that A is classically provable in LK if and only if ¬A∗ is
intuitionistically provable in LJ.

The corresponding translation LLP → LL is called the reversing translation
(−)ρ, also shown in Figure 7. In this case, we can still derive the structural rules
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X b := ! X X
b

:= ? X

1b := ! 1 ⊥b := ?⊥
(P1 ⊗ P2)b := ! (P1

b ⊗ P2
b) (N1 ` N2)b := ? (N1

b ` N2
b)

0b := ! 0 >b := ?>
(P1 ⊕ P2)b := ! (P1

b ⊕ P2
b) (N1 & N2)b := ? (N1

b
& N2

b)

(↓N )b := ! N b (↑P)b := ? Pb

X ρ := ! X⊥ X
b

:= ? X
⊥

1ρ := 1 ⊥ρ := ⊥
(P1 ⊗ P2)ρ := P1

ρ ⊗ P2
ρ (N1 ` N2)ρ := N1

ρ ` N2
ρ

0ρ := 0 >ρ := >
(P1 ⊕ P2)ρ := P1

ρ ⊕ P2
ρ (N1 & N2)ρ := N1

ρ
& N2

ρ

(↓N )ρ := ! N b (↑P)ρ := ? Pρ

Figure 7: The box translation and the reversing translation (Laurent and Reg-
nier, 2003).

for N ρ, but it requires the introduction of a cut against the canonical proof of
? N ρ ( N ρ.

Finally, Laurent and Regnier show that (〈A〉−)ρ = G (A∗) and similarly for
derivations in LK.

Positive translation. Laurent and Regnier (2003) show a similar result for
the positive translation LC→ LLP satisfying 〈A→ B〉+ = ! (〈A〉+ ( ? 〈B〉+):

〈A→ B〉+ = 〈¬ (A+ ∧ ¬B+)〉 = ↓〈A+ ∧ ¬B+〉⊥

= ↓(〈A+〉 ⊗ 〈¬B+〉)⊥ = ↓(〈A+〉 ⊗ ↓〈B+〉⊥)
⊥

= ↓(〈A+〉⊥ ` ↑〈B+〉)

They postulate a similar commuting diagram for call-by-value CPS translations:

LK LJ

LLP LL

CPS

! (A ( ? B)〈−〉+

CPS
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6 Related Work and Conclusion

In this paper, polarization is presented from a proof-theoretic perspective, and as
such the emphasis is on the meaning of propositions, judgments, and derivations.
Through the Curry-Howard isomorphism, polarization has applications in other
domains as well, which we review briefly here.

Evaluation order: CBV vs CBN. Traditionally, evaluation strategies for
λ-calculi have been independent from type systems, and so we often have more
than one valid evaluation strategy for any particular type system. Zeilberger
(2008) points out that as type systems get more precise, however, this property
breaks down. One example includes ML value restriction on polymorphism
(Milner et al., 1997), which says that only values can have polymorphic type
signatures. Without this restriction on types, call-by-name is sound but call-
by-value is unsound. Another example arises in a type system with subtyping
and intersection types: the standard rule

(A→ B) ∩ (A→ C) ≤ A→ (B ∩ C)

is sound under call-by-name but unsound under call-by-value.
On the other hand, starting from Levy (2003) and continuing with Curien

and Herbelin (2000) and Wadler (2003), it has become clear that the call-by-
value and call-by-name disciplines are dual to each other. Polarization solves
this incongruity by letting both evaluation disciplines exist in the same type
system. In particular, positive types are strict data structures and negative
types are lazy data structures; this is the case with sums and products as well
as with implication. Polarized type systems with an emphasis on evaluation
order have been developed by, for example, Zeilberger (2008), Spiwack (2014),
and Stump (2014).

Game semantics and categorical models. In game theory, propositions
are interpreted as individual game states, and derivations are interpreted as valid
moves on games. Linear duality corresponds to switching the player whose turn
it is (proponent versus opponent). Thus, while Hyland and Ong (2000) introduce
games that always start with the opponent, Laurent (2004) postulates another
collection of games that start with the proponent, and calls these two kinds of
games negative and positive respectively. Indeed, these games interpret LLP
negative and positive propositions.

Categorical models of polarized logic have also appeared out of the search for
game semantics, for example by Cockett and Seely (2007), Hamano and Scott
(2007), and Melliès and Tabareau (2010). The basic structure for such polarized
categories consists of two categories, one positive and one negative, connected
by some adjoint structure.

Focusing versus polarization. The domains of focusing and polarization
are closely intertwined, but also stand on their own. Focusing, introduced by
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Andreoli (1992) in the context of proof search, makes the observation that right
rules for negative connectives are invertible, so may be applied as soon as possi-
ble. On the other hand, right rules for positive connectives should be applied as
late as possible, but once such a rule is applied, that proposition is considered
focused, and right rules can continue to be applied as much as possible.

Although focused logics pay attention to the polarity of a connective, they
often do not attribute a notion of polarity to a proposition itself. If anything,
the polarity of a proposition may be defined to be the polarity of its outermost
connective, in contrast to polarized logic in which the polarity of a proposition
depends more on the structure of the proposition.

Although many polarized logics set some kind of focus on a particular
proposition—the right of the judgment in ZU, the stoup on LC—the order of
operations is not restricted as in Andreoli’s focusing system.

Conclusion. In this report we have unpacked the meaning of polarized logic
starting from Zeilberger’s judgmental meaning-theories. Using this intuition as
a starting point, we have considered two other presentations of polarized logic—
Girard’s original presentation based on classical logic, and Laurent and Regnier’s
approach based on linear logic. We also compared polarization strategies to
double negation translations to show that the intuitionistic understanding of
classical logic via CPS translations can be factored into an understanding via
polarized logic.
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