
Curry-Howard for GUIs
Or, User Interfaces via Linear Temporal, Classical Linear Logic

Jennifer Paykin
University of Pennsylvania

<jpaykin@seas.upenn.edu>

Neelakantan R. Krishnaswami
University of Birmingham

<N.Krishnaswami@cs.bham.ac.uk>

Steve Zdanciewic
University of Pennsylvania
<stevez@cis.upenn.edu>

1. Problem
Graphical user interface toolkits are one of the most com-
monly encountered higher-order interfaces. Even in lan-
guages (such as Java and C++) where programmers tend to
avoid higher-order abstractions, the GUI libraries invariably
expose a higher-order API.

The ruling abstraction for these libraries is the event.
The user interface is thought of as something that changes
over time, and programmers may register their interest
in particular events by passing the UI a callback function
to invoke whenever the event happens. Programming in
an event-based style (even using standard patterns such
as model-view-controller [11]) is notoriously difficult: pro-
grammers must write imperative, higher-order programs in
continuation-passing style!

Within the functional programming community, a popu-
lar proposal for taming this complexity is functional reactive
programming [6]. This model eliminates imperative state from
the semantic model of interactive programs by treating time-
varying values as first-class datatype, and eliminates concur-
rency by taking a synchronous view of time. This is known to
be an expressive and principled approach — a recent line of
work [9, 10, 12] shows that functional reactive programming
can be thought of as a Curry-Howard style lambda calculus
for linear temporal logic.

However, the conceptual basis of modern GUI toolkits
and FRP are seemingly incompatible. Traditional GUI toolk-
its present an asynchronous model of time to the program-
mer. Conceptually, each widget in a user interface has its own
logical sequence of events, and there is no intrinsic relative
ordering between the events occuring in two different wid-
gets: if a programmer wants to order the events occuring on
two different widgets, they must write synchronization code
themselves. In contrast, the semantics of FRP is based on a
synchronous model of time. As a result, within the semantics
it is always reasonable to compare any two events for when
they occur, no matter where they come from — time is global.
As a result of this mismatch, there have been very few seri-
ous attempts to integrate the FRP and the event-based model
of GUIs ([8] being a notable exception), with most attempts
to build FRP UI libraries taking a clean-slate approach.

However, the event-based model was not adopted idly!
Used carefully, it offers some very significant advantages.
First, the event-based style means that when a widget is not
reacting to an event, it does no computation at all, which
may offer significant performance benefits over the basic FRP
style. Second, programmers do informal reasoning about
GUIs, which treats each widget as a little process commu-

nicating with other widgets via message passing1. In par-
ticular, programmers rely heavily on the fact that widgets
which do not communicate with each other at all do not af-
fect each other’s behavior. This “frame rule” style principle
greatly simplifies building dynamic GUIs, where the widget
hierarchy changes as the program executes.

2. Clues
To recap, FRP has a very solid logical foundation, and event-
based programming has a very solid implementation strat-
egy — but each style is weak where the other is strong. Can
we combine these two? In approaching this questions, we
have a few clues to work with.

From Widgets to Processes First, we will take seriously the
fact that programmers talk about GUI widgets as if they were
processes. This naturally suggests that a surface language for
GUIs could be based on the process calculus. Furthermore,
the fact that programmers use an informal notion of separa-
tion between different GUI components suggests that some
kind of substructural discipline, like separation logic [15],
might be appropriate.

Happily, there is a long line of research [1, 4, 16] show-
ing how to use classical linear logic [7] to give types to pro-
cess calculi. Thanks to the use of linearity as a type discipline,
these process calculi can naturally encode ideas such as ses-
sion types, and have very strong global reasoning properties,
such as confluence and deadlock-freedom, which puts con-
currency under solid control. This leads to our first idea:

Idea #1: Use a linearly-typed process calculus to capture the
concurrent, interactive intuitions of programmers.

Moreover, we would like to smoothly embed a process
calculus into a more conventional language. For intuition-
istic linear logic, Benton [3] showed how to integrate lin-
ear and nonlinear calculi on an equal basis, and Paykin and
Zdancewic [14] have recently extended this result to classi-
cal linear logic with their LPC (Linear/Producer/Consumer)
calculus. So this is possible without giving up the logical
character of the system.

Callbacks, Continuations, and Temporal Logic Our first
clue comes from looking at the type of event handlers in GUI
toolkits. In Haskell-style notation, an event handler method
has the type:

onEvent : (Event → IO ()) → IO ()

1 Messages can be implemented either through explicit event sig-
nalling or modifying shared state — but programmers talking with
each other tend using the vocabulary of message passing.

Curry-Howard for GUIs, OBT’15 submission 1 2014/11/13

Operationally, what will happen is that the onEvent function
takes an event handler k, and then will store k in a queue un-
til the event happens, at which point it will invoke k with the
appropriate event data. So a more temporally-accurate type
for onEvent is

onEvent : �(Event → IO ()) → IO ()

where �A is the “always” modality of temporal logic, which
says that the value k should be usable at all times in the
future. So the argument type �(Event → IO ()) means that
the callback should be invokable any time in the future (i.e.,
whenever the event actually occurs).

Now, if we read IO () as the answer type of a continuation,
with A→ IO () being read as the negation type ¬A, then we
can read the type of onEvent as:

onEvent : ¬�(¬Event)

But this is precisely the encoding of the “eventually” opera-
tor in classical modal logic! This leads us to our next idea:

Idea #2: Look at continuation-passing style interpretations of
classical temporal logic for hints about implementation.

3. Approach
Our clues have suggested we should express programs process-
theoretically, and we want to implement them using con-
tinuations. To connect these two ideas, we will make use
of a recently introduced substructural logic, called tensorial
logic [13]. Tensorial logic can be thought of as a subset of intu-
itionistic linear logic, where the linear implication A (B is
eliminated, and replaced with a negation ¬A. For us, the key
feature of tensorial logic is that any proof of full classical lin-
ear logic can be translated into tensorial logic, by translating
the connectives and derivation rules appropriately.

As a result, if we can give a sensible operational inter-
pretation for a (temporal) tensorial logic, then we automat-
ically have an operational interpretation for full classical lin-
ear logic. We give the grammar of types of tensorial logic be-
low:

A ::= I | A⊗ B | ¬A | �A | Widget | Event

Our operational intuition is a stylized version of how event
loops in the HTML DOM or other GUI toolkits work. Essen-
tially, we we have a memory full of (mutable) widgets, each
of which has an event queue in which it stores callbacks. On
each tick of the event loop, some widget is chosen and its
events are fired.

The I type is the unit type, and A ⊗ B is the type of
pairs, where A and B access disjoint regions of memory. Op-
erationally, the negation type ¬A is the type of callbacks
functions which take an A as an argument, and when ex-
ecuted perform some imperative action which respect the
event loop’s internal invariants. The type �A is the type of
A-values which are good both on the current tick, and on all
future ticks. The type Event is the type of event data, and
the Widget type denotes GUI widgets.

Formalizing these natural operational ideas is non-trivial,
primarily because of the mathematical difficulties involved
in handling callbacks. They are higher-order functions which
are imperatively added and removed from the heap, which
themselves perform actions on the heap. However, we are
currently in the process of using some ideas from separation
logic [5] and step-indexed models of state [2] to develop a
logical relations model of callbacks as an implementation of
tensorial logic.

4. Conclusion
Since this work is in-progress, and not complete, it should be
regarded as conjectural. However, we think it is an extremely
interesting conjecture, and we hope to:

1. Explain how there are secretly beautiful logical abstrac-
tions inside the apparent horror of windowing toolkits;

2. Illustrate how to write higher-order programs which au-
tomatically maintain complex imperative invariants, and

3. Show the audience some Javascript programs which we
can claim are actually π-calculus terms in disguise.

References
[1] Samson Abramsky. Process realizability. Electronic Notes in

Theoretical Computer Science, 23(1):1–2, 1999.
[2] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-

dependent representation independence. In ACM SIGPLAN
Notices (POPL 2009), volume 44, pages 340–353. ACM, 2009.

[3] Nick Benton and Philip Wadler. Linear logic, monads and the
lambda calculus. In Logic in Computer Science, 1996. LICS’96.,
pages 420–431. IEEE, 1996.

[4] Luı́s Caires and Frank Pfenning. Session types as intuitionis-
tic linear propositions. In CONCUR 2010-Concurrency Theory,
pages 222–236. Springer, 2010.

[5] Cristiano Calcagno, Peter W O’Hearn, and Hongseok Yang.
Local action and abstract separation logic. In Logic in Computer
Science, 2007. LICS 2007. 22nd Annual IEEE Symposium on, pages
366–378. IEEE, 2007.

[6] Conal Elliott and Paul Hudak. Functional reactive animation. In
ACM SIGPLAN Notices (ICFP 1997), volume 32, pages 263–273.
ACM, 1997.

[7] Jean-Yves Girard. Linear logic. Theoretical computer science,
50(1):1–101, 1987.

[8] Daniel Ignatoff, Gregory H Cooper, and Shriram Krishna-
murthi. Crossing state lines: Adapting object-oriented frame-
works to functional reactive languages. In Functional and Logic
Programming, pages 259–276. Springer, 2006.

[9] Alan Jeffrey. LTL types FRP: linear-time temporal logic propo-
sitions as types, proofs as functional reactive programs. In Pro-
ceedings of the sixth workshop on Programming languages meets pro-
gram verification, pages 49–60. ACM, 2012.

[10] Wolfgang Jeltsch. Towards a common categorical semantics
for linear-time temporal logic and functional reactive program-
ming. Electronic Notes in Theoretical Computer Science, 286:229–
242, 2012.

[11] Glenn E Krasner, Stephen T Pope, et al. A description of the
model-view-controller user interface paradigm in the smalltalk-
80 system. Journal of object oriented programming, 1(3):26–49,
1988.

[12] Neelakantan R Krishnaswami. Higher-order functional reac-
tive programming without spacetime leaks. In Proceedings of
the 18th ACM SIGPLAN international conference on Functional pro-
gramming, pages 221–232. ACM, 2013.

[13] Paul-André Mellies and Nicolas Tabareau. Resource modalities
in tensor logic. Annals of Pure and Applied Logic, 161(5):632–653,
2009.

[14] Jennifer Paykin and Steve Zdancewic. A lin-
ear/producer/consumer model of classical linear logic.
Technical report, University of Pennsylvania, April 2014.

[15] John C Reynolds. Separation logic: A logic for shared mutable
data structures. In Logic in Computer Science, 2002. Proceedings.
17th Annual IEEE Symposium on, pages 55–74. IEEE, 2002.

[16] Philip Wadler. Propositions as sessions. In ACM SIGPLAN
Notices (ICFP 2012), volume 47, pages 273–286. ACM, 2012.

Curry-Howard for GUIs, OBT’15 submission 2 2014/11/13

