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Abstract. In this paper we compare Wadler’s CP calculus for classical
linear processes to a linear version of Parigot’s λµ calculus for classical
logic. We conclude that linear λµ is “more or less” CP, in that it equa-
tionally corresponds to a polarized version of CP. The comparison is
made by extending a technique from Melliès and Tabareau’s tensor logic
that correlates negation with polarization. The polarized CP, which is
written CP± and pronounced “CP more or less,” is an interesting bridge
in the landscape of Curry-Howard interpretations of logic.

1 Introduction

In 2012 Philip Wadler introduced CP, a language of “classical processes” in the
style of Caires and Pfenning’s session-typed processes (2010). CP is a recent
advance in the long and distinguished line of work that connects logic to compu-
tation via the Curry-Howard correspondence. In this instance, Wadler connects
Girard’s (classical) linear logic (1987) to a variant of Milner’s π-calculus (1992)
by using types to express communication protocols—sessions—that synchronize
concurrent threads of execution. The connection to logic endows CP with strong
correctness properties: type safety and deadlock freedom.

Over the years, research into the Curry-Howard isomorphism has built up a
vast landscape of languages and logics. One particularly rich and relevant domain
is calculi typed by classical (but not necessarily linear) logic. Among these are
Griffin’s λC-calculus (1990), Parigot’s λµ-calculus (1992), Curien and Heberlin’s
λµµ̃-calculus/System L (2000), and Wadler’s own dual calculus (2003). With
CP in mind, we can even consider linear versions of these calculi, such as Lin-
ear L (Munch-Maccagnoni, 2009; Spiwack, 2014) and linear λµ, the natural linear
variant of Parigot’s λµ-calculus.

A natural question then arises:

How does CP relate to linear interpretations of classical calculi?

In this paper, we answer the question by showing that CP is almost (but not
quite) the same thing as linear λµ. In particular, linear λµ corresponds exactly
with a polarized version of CP, which we introduce here and dub CP±. Com-
pared to Wadler’s original CP, CP± (which can be read “CP more or less”)
separates positive (sending) from negative (receiving) types and inserts shift



connectives between them. Operationally, polarization reduces the amount of
nondeterminism, statically making more choices about how processes synchro-
nize.1 CP± is thus “more or less” CP, where the scheduling is statically decided.
We summarize our results in the following Wadleresque slogan:

Linear λµ is CP (more or less).

The relationship between linear λµ and CP hinges on duality. Linear λµ is
a classical logic of two-sided sequents, while CP (and consequently CP±) is a
classical logic of one-sided sequents. To relate them, we follow a plan laid out by
Melliès and Tabareau (2010) in the context of tensor logic, which similarly comes
in two flavors. The two-sided presentation of tensor logic is an intuitionistic logic
of (non-involutive) negation; the one-sided presentation is a polarized logic of
(non-invertible) shift operators. When linear λµ takes the place of the two-sided
presentation, CP± arises naturally from the dualization procedure.

The contributions of this paper are summarized as follows. Section 2 presents
a core formulation of Wadler’s CP, using a novel and elegant operational se-
mantics. Section 3 introduces linear λµ, including both call-by-value and call-
by-name operational semantics. We define CP± in Section 4, first describing the
duality derived from tensor logic, and then inferring the syntax and semantics
from the type structure. Section 5 gives the main result, establishing the equa-
tional correspondence between linear λµ and CP±. We briefly conclude with
a discussion of the relationships between CP, CP±, and other computational
interpretations of classical logics.

2 CP and Session Types

In this section we describe a variation on Wadler’s CP calculus (2012; 2014),
based on the line of work by Caires and Pfenning (2010) that treats the types
of linear logic as descriptions of session protocols and the proofs of linear logic
as processes obeying these protocols. A (binary) session is just a communication
channel between two processes. The types of linear logic describe the protocols
by which these channels should behave.

X ,Y ::= 1 | X ⊗Y | ⊥ | X ` Y | 0 | X ⊕Y | > | X & Y

Consider a process P that offers a channel x obeying protocol X . The process
at the other end of the channel, Q , must obey the dual protocol X⊥. Duality

is involutive—that is, we have (X⊥)
⊥

= X . We write the composition of these
two processes as νx .〈P | Q〉, and the session type X describes their behavior as
shown in Figure 1.

Each connective has an associated direction—processes send messages over
channels behaving like a tensor ⊗, but they receive messages over channels be-
having like a par `. However, the direction of each channel is not fixed. For

1 Pfenning and Griffith (2015) have also studied polarization in their work on intu-
itionistic session types, where it distinguishes synchronous and asynchronous com-
munication.



x : X P x : X⊥ Q

1
sends an empty message over x
and immediately halts

⊥ receives an empty message on
x and closes the channel

X1 ⊗X2
sends a channel obeying X1

over x , then behaves like X2
X1
⊥ `X2

⊥ receives a channel obeying X1
⊥

over x , then behaves like X2
⊥

0 (no channels obey 0) > aborts

X1 ⊕X1
sends a flag indicating whether
x will behave as X1 or X2

X1
⊥ & X2

⊥ receives a flag indicating that x
will behave as X1

⊥ or X2
⊥

Fig. 1. Session types and their intended semantics. Process P interacts with Q via the
cut νx .〈P | Q〉. By duality, P could equally well offer a channel behaving as X⊥.

example, a process may send a value on a channel, then immediately receive a
flag on the same channel. The session-based type of such a channel would be
X1 ⊗ (X2 & X3).

2.1 Syntax and Static Semantics

As in the π-calculus, a process P is made up of bodies and prefixes to manipulate
channels.

P :: = x ↔ y | νx .〈P1 | P2〉
| x [].0 | x ().P
| x [y ].(P1 | P2) | x (y).P

| x .case()
| x [inji ].P | x .case(P1 | P2)

The link operator x ↔ y connects the channels x and y together. The cut
operator νx .〈P1 | P2〉 synchronizes communication on a channel whose endpoints
lie in P1 and P2. The other syntactic forms are prefix actions, which send or
receive on channels according to one of the session protocols.

The typing judgment P ` Ω specifies that the channels offered by P obey
certain protocols, specified by Ω. Here Ω is a collection of channel names x with
their types X . The typing rules for CP are shown in Figure 2.

2.2 Operational Semantics

Wadler (2012) nicely summarizes the Curry-Howard interpretation of session
types as follows: propositions are session types, proofs are processes, and cut
elimination is communication. The operational behavior of processes is the de-
scription of how communication occurs over channels. The end goal of this com-
munication is a process that is free of both cuts and (non-atomic) links. With
that goal in mind, each step of communication falls into one of three groups.



y ↔ x ` y : A⊥, x : A
ax

P1 ` Ω1, x : A P2 ` x : A⊥, Ω2

νx .〈P1 | P2〉 ` Ω1, Ω2
cut

x [].0 ` x : 1
1

P ` Ω
x ().P ` x : ⊥, Ω ⊥

P1 ` Ω1, y : A P2 ` Ω2, x : B

x [y ].(P1 | P2) ` Ω1, Ω2, x : A⊗ B
⊗

P ` y : A, x : B , Ω

x (y).P ` x : A` B , Ω
`

(no 0 rule)
x .case() ` x : >, Ω >

P ` Ω, x : Ai

x [inji ].P ` Ω, x : A1 ⊕A2
⊕

P1 ` x : A, Ω P2 ` x : B , Ω

x .case(P1 | P2) ` x : A & B , Ω
&

Fig. 2. The CP calculus

First, β-reduction rules describe the synchronous communication between
two processes.

νx .〈y ↔ x | P〉 →β P{y/x}
νx .〈x [].0 | x ().P〉 →β P

νx .〈x [y ].(P1 | P2) | x (y).P3〉 →β νy .〈P1 | νx .〈P2 | P3〉〉
νx .〈x [inji ].P | x .case(P1 | P2)〉 →β νx .〈P | Pi〉

Structural equivalence rules allow us to swap the order of cuts and forwarding
links in these rules to avoid unnecessary duplication.

νx .〈P1 | P2〉 ≡s νx .〈P2 | P1〉 x ↔ y ≡s y ↔ x (1)

Second, link forwarding is defined by η-expansion rules.

(y ↔ x ` y : ⊥, x : 1)→η y().x [].0

(y ↔ x ` y : X⊥ ` Y
⊥
, x : X ⊗Y )→η y(y ′).x [x ′].(y ′ ↔ x ′ | y ↔ x )

(y ↔ x ` y : >, x : 0)→η y .case()

(y ↔ x ` y : A⊥ & B
⊥
, x : A ⊕ B)→η y .case(x [inj1].y ↔ x | x [inj2].y ↔ x )

The rest of the operational behavior of processes deals with commuting con-
versions, by which non-interfering actions can be executed in any order. Pre-
sentations of commuting conversions are often very intricate, as there are a
quadratic number of interleavings of non-interfering actions. Here, we present a
unified view of commuting conversions by classifying them into three groups.

The first group of commuting conversions permutes an action (corresponding
to one of the session protocols) around a cut. For example, when x does not occur
in P2 and y does not occur in P1, then

νx .〈P1 | y [z ].(P2 | P3)〉 →CC y [z ].(P2 | νx .〈P1 | P3〉).



The presence of the additives, > and &, adds even stranger looking conversions:

νx .〈y .case() | Q〉 →CC y .case()

νx .〈y .case(P1 | P2) | Q〉 →CC y .case(νx .〈P1 | Q〉 | νx .〈P2 | Q〉)

This class of conversions is directed, to push the cut after the action so that
it becomes closer to its own synchronizing channel. The combination of this
class of conversions with the β-reduction rules results in a cut elimination pro-
cedure (Theorem 1).

The second group of commuting conversions says that two cuts on different
channels can be performed in either order. Assuming that x does not occur in
P2 and y does not occur in P1, we have

νx .〈P1 | νy .〈P2 | P3〉〉 ≡CC νy .〈P2 | νx .〈P1 | P3〉〉.

This type of conversion is classified by Wadler as a structural equivalence, which
we denote ≡s. However, while the two structural equivalences in Equation (1) are
necessary to define the normalization or communication procedure of processes,
the conversion in this section is not.

The third class of conversions says that prefix actions on different channels
can occur in any order. For example, if x (which is not equal to z ) does not
occur in P1, then

x [inj1].z [y ].(P1 | P2) ≡CC z [y ].(P1 | x [inj1].P2).

The motivation behind this type of commuting conversion is the independence
of non-interfering sessions. That is, when two prefixes do not refer to each other,
they should not interfere. Again, this class of conversions is undirected; it is not
necessary for the definition of a communcation/cut-elimination procedure. The
relation ≡CC instead defines behavioral equivalence of processes, as described by
Pérez et al. (2014).

Commuting Conversions via Contexts. A context C is any process with
holes (possibly zero or more than one) for other processes. The number of holes
in C is called its arity. We write C [P1, .. ,Pi ] for the operation that fills holes
with processes.2 Two contexts are disjoint, written C1⊥C2, if the set of channels
referred to by C1 is disjoint from the set of channels referred to by C2.

The composition of two contexts C2◦C1 replicates the inner context C1 in all
of the holes of the outer context C2. This is illustrated by the following examples:

νx .〈� | P〉 ◦ C = νx .〈C | P〉
x .case() ◦ C = x .case()

x .case(� | �) ◦ C = x .case(C | C )

2 To give the definitions in this section precisely, it would be necessary to use named
holes and substitutions to fill in the holes. For the purposes of this paper we leave
these operations informal.



The arity of C1 ◦ C2 is the product of the arities of the two subcontexts.
For any context C with a single hole, we have a congruence rule to reduce

processes under actions.
P ≡s P ′

C [P ] ≡s C [P ′] (2)

To define commuting conversions, we pick out certain classes of contexts that
refer to the different components of the commuting conversion rules. Evaluation
contexts, written Ce, consist of cuts with a single top-level hole, and action
contexts, written Ca, consist of prefix actions also with top-level holes.

Ce ::= νx .〈� | P2〉 | νx .〈P1 | �〉
Ca ::= x ().� | x [y ].(� | P2) | x [y ].(P1 | �) | x (y).�

| x .case() | x [inji ].� | x .case(� | �)

Notice that x .case() is a context with arity zero, and x .case(� | �) is a context
with arity two.

The three classes of commuting conversion rules can be summarized neatly
as follows:

Ce⊥Ca

Ce ◦ Ca[P1, .. ,Pi ]→CC Ca ◦ Ce[P1, .. ,Pi ]
action-cut

Ce1⊥Ce2
Ce1 ◦ Ce2 [P ] ≡CC Ce2 ◦ Ce1 [P ]

cut-cut

Ca1⊥Ca2
Ca1 ◦ Ca2 [P1, .. ,Pi ] ≡CC Ca2 ◦ Ca1 [P1, .. ,Pi ]

action-action

2.3 Reduction and Equivalence

The step relation on processes is the least relation generated by →β , →η, →CC ,
and ≡s. Behavioral equivalence, written ≡, is defined to be the least congruence
containing the step relation and ≡CC .

Theorem 1 (Progress and Preservation).

1. If P ` Ω then either P is cut- and link-free, or P can take a step.
2. If P ` Ω and P steps to P ′, then P ′ ` Ω.

The structural equivalence relation ≡s makes reduction in CP extremely non-
deterministic. We conjecture that the step relation is confluent up to commuting
conversions ≡CC , but have not proved this fact. In addition, there is no meaning-
ful notion of evaluation order; the properties of call-by-name and call-by-value
are not even expressible. In Section 4 we will see that CP± has the ability to
resolve this non-determinism by employing different evaluation strategies, in the
style of Wadler’s dual calculus (2003).



3 Linear λµ and Linear Classical Logic

In this section we answer the question: what is a linearized classical language,
as opposed to a language for classical linear logic? Just as the simply-typed
λ-calculus can be linearized to obtain a calculus for intuitionistic linear logic,
we can similarly linearize Parigot’s λµ-calculus for classical logic (1992). Such
systems have been considered before, for example by Munch-Maccagnoni (2009)
and Spiwack (2014).

Following Wadler (2005), we take the types of linear λµ to consist of nega-
tion, units, products and sums—implication is defined in terms of negation and
products. Products and sums are written in the style of linear logic.

A,B ::= ¬A | 1 | A ⊗ B | 0 | A ⊕ B

3.1 Syntax and Static Semantics

The syntax of λµ consists of two parts: terms and commands. Terms t are
typed expressions, while commands c have no types, but instead define a relation
between the two different sorts of variables. Term variables, written x , can be
thought of in the usual way—as providing input to an expression. Continuation
variables, written α, consume the output of an expression.

The quintessential command feeds a term t into a continuation variable α,
and is written [α]t . On the other hand, if a continuation variable α is used in a
command c, the term µα.c extracts the value passed to α inside of c.

The syntax of terms and commands is summarized below. We use expressions
e to refer to either syntactic form.

t ::= x | µα.c
| λx .c | let x = t1 in t2
| () | let () = t1 in t2
| (t1, t2) | let (x1, x2) = t1 in t2

| case t of ()
| inji t | case t of (inj1 x1 → t1, inj2 x2 → t2)

c ::= [α]t
| t1 t2 | let x = t in c
| let () = t in c | let (x1, x2) = t in c
| case t of () | case t of (inj1 x1 → c1, inj2 x2 → c2)

There are similarly two typing judgments: Γ ` t : A | Π for terms, and
Γ ` c | Π for commands. Here Γ is a context of term variables x , and Π is
a context of continuation variables α. For rules that are polymorphic in the
judgment, we write Γ ` e : Θ | Π, where Θ is a stoup of either zero or one
types.

Figure 3 shows the typing rules. Many of the rules are unsurprising for a
linear λ-calculus. Note that λ is used for negation abstraction instead of the
usual λ, and every application is a command, not a term.



x : A ` x : A | · var
Γ1 ` t : A | Π1 Γ2, x : A ` e : Θ | Π2

Γ1, Γ2 ` let x = t in e : Θ | Π1, Π2
let

Γ ` c | Π,α : A

Γ ` µα.c : A | Π µ-I
Γ ` t : A | Π

Γ ` [α]t | Π,α : A
µ-E

Γ, x : A ` c | Π
Γ ` λx .c : ¬A | Π

¬-I
Γ1 ` t1 : ¬A | Π1 Γ2 ` t2 : A | Π2

Γ1, Γ2 ` t1 t2 | Π1, Π2
¬-E

· ` () : 1 | · 1-I
Γ1 ` t : 1 | Π1 Γ2 ` e : Θ | Π2

Γ1, Γ2 ` let () = t in e : Θ | Π1, Π2
1-E

Γ1 ` t1 : A1 | Π1 Γ2 ` t2 : A2 | Π2

Γ1, Γ2 ` (t1, t2) : A1 ⊗A2 | Π1, Π2
⊗-I

Γ1 ` t : A⊗ B | Π1 Γ2, x : A, y : B ` e : Θ | Π2

Γ1, Γ2 ` let (x , y) = t in e : Θ | Π1, Π2
⊗-E

Γ ` t : 0 | Π
Γ ` case t of () : Θ | Π 0-E

Γ ` t : Ai | Π
Γ ` inji t : A1 ⊕A2 | Π

⊕-I

Γ1 ` t : A1 ⊕A2 | Π1 Γ2, x1 : A1 ` e1 : Θ | Π2 Γ2, x2 : A2 ` e2 : Θ | Π2

Γ1, Γ2 ` case t of (inj1 x1 → e1, inj2 x2 → e2) : Θ | Π1, Π2
⊕-E

Fig. 3. The Linear λµ-calculus

To understand how these language features interact, consider the encoding
of linear implication A( B in classical logic as ¬ (A⊗¬B). We can encode the
application rule as

Γ1 ` t1 : A( B | Π1 Γ2 ` t2 : A | Π2

Γ1, Γ2 ` t1 t2 : B | Π1, Π2

(-E
⇒

Γ1 ` t1 : ¬ (A⊗ ¬B) | Π1

Γ2 ` t2 : A | Π2

y : B ` y : B | ·
y : B ` [β]y | β : B

· ` λy .[β]y : ¬B | β : B

Γ2 ` (t2, λy .[β]y) : A⊗ ¬B | Π2, β : B

Γ1, Γ2 ` t1 (t2, λy .[β]y) | Π1, Π2, β : B

Γ1, Γ2 ` µβ.t1 (t2, λy .[β]y) : B | Π1, Π2



We can also consider the encoding of Felleisen’s C operator (1988), which is
typed by double negation elimination.

Γ ` t : ¬¬A | ∆ · ` λx .[α]x : ¬A | α : A

Γ ` t (λx .[α]x ) | ∆,α : A

Γ ` µα.t (λx .[α]x ) : A | ∆

3.2 Operational Semantics

In this section we define an operational semantics for linear λµ in both call-by-
value and call-by-name style. We first give the β and η rules that are shared
by the two reduction strategies. The β rules are given in terms of let bindings,
and the difference between CBV and CBN comes down to the treatment of let
reduction and evaluation contexts, as shown in Figure 4.

First, the β rules:

(µ) −
(¬) (λx .c) t →β let x = t in c
(1) let () = () in e →β e
(⊗) let (x1, x2) = (t1, t2) in e →β let x1 = t1 in let x2 = t2 in e
(0) −
(⊕) case inji t of (inj1 x1 → e1, inj2 x2 → e2) →β let xi = t in ei

Next we have local η expansions:

(µ) t : A →η µα.[α]t

(¬) t : ¬A →η λx .t x
(1) t : 1 →η let () = t in ()
(⊗) t : A1 ⊗A2 →η let (x1, x2) = t in (x1, x2)
(0) t : 0 →η case t of ()
(⊕) t : A1 ⊕A2 →η case t of (inj1 x1 → inj1 x1, inj2 x2 → inj2 x2)

Terms reduce under arbitrary evaluation contexts, and under µ binders. No-
tice that evaluation contexts are closed under term variables x ; we only consider
reduction over closed terms. However, evaluation contexts are open under con-
tinuation variables α, and these contexts characterize the capturing of µ binders
inside larger expressions.

t → t ′

E [t ]→ E [t ′]

c → c′

µα.c → µα.c′
E [µα.c] is a command

E [µα.c]→ c{E/α}

As an example of the last rule, consider the application (µα.c) t which captures
the current context � t as the continuation α inside the command c. To achieve



CBV

let x = v in e →β e{v/x}

v ::= λx .c | () | (v1, v2) | inji v
E ::= � | [α]E

| E t | let x = E in e

| let () = E in e

| (E , t) | (v ,E) | let (x1, x2) = E in e

| caseE of (inj1 x1 → e1, inj2 x2 → e2)

| inji E

CBN

let x = t in e →β e{t/x}

v ::= λx .c | () | (t1, t2) | inji t
E ::= � | [α]E

| E t

| let () = E in e

| let (x1, x2) = E in e

| caseE of (inj1 x1 → e1, inj2 x2 → e2)

Fig. 4. CBV and CBN for linear λµ: let reduction, values, and evaluation contexts

this, the continuation variable α should be replaced everywhere by the actual
continuation � t . We write this substitution c{E/α}, with the defining clause as

([β]t){E/α} =

{
E [t ] if α = β

[β]t{E/α} otherwise

Note that in the first case, substitution does not continue inside of t because the
use of continuation variables is linear.

Since this rule only applies to evaluation contexts that form a command,
how do such contexts reduce when E [µα.c] is a term? First, the term undergoes
η-expansion, and then µ-capturing applies to the new context [β]E :3

E [µα.c]→η µβ.[β](E [µα.c])→ µβ.c{[β]E/α}.

We define two classes of normal forms, tN for terms and cN for commands:

tN ::= v | µα.cN cN ::= [β]v

Theorem 2 (Progress and Preservation).

1. If Γ ` e : Θ | Π then e is either one of tN or cN , or e can take a step.
2. If Γ ` e : Θ | Π and e → e ′, then Γ ` e ′ : Θ | Π.

4 Dualization and CP±

On the surface, the programming style of CP seems alien to the programming
style of λµ. To rephrase Bernardy et al. (2014), the λµ-calculus is still a λ-
calculus; CP is not. To go even further, the type systems are not obviously
equivalent; it is not clear how negation relates to the operators of CLL.

3 The operational semantics we present here is quite a bit different from Selinger (2001)
and Wadler (2005). Their µ−β rules are encompassed by our notion of µ-capturing.
Their ξ rule corresponds to the procedure of µ-capturing inside a term described
here.



Tensor logic (Melliès and Tabareau, 2010) provides insight into the relation-
ship between a λ calculus and a one-sided judgment. Introduced in the setting of
game theory, it also has applications in category theory (Melliès and Tabareau,
2010) and as a type theory for CPS (Paykin et al., 2015). Perhaps the defining
feature of tensor logic is that it can be studied equally well from two perspec-
tives. The two-sided perspective results in a logic of non-involutive negation,
while the one-sided perspective results in a logic of non-invertible polarization.

In this section we will replicate the two perspectives of tensor logic in the
setting of classical linear logic. The question we must answer is: how does the
two-sided λµ calculus relate to the one-sided CP?

4.1 Duality in λµ

De Morgan duality, written (−)
⊥

, is the key to permuting types around the
turnstile in a derivation. The canonical rules for duality are

Γ ` A, Π

Γ,A⊥ ` Π
Γ,A ` Π
Γ ` A⊥, Π

Duality is strictly involutive ((A⊥)
⊥

= A), which means that the above rules
are also invertible. This flexibility allows us to shift perspective by freely moving
hypotheses to different parts of the judgment. Therefore, any judgment Γ ` Π
in a two-sided logic can be viewed in a one-sided logic as · ` Γ⊥, Π.

In classical logics, De Morgan duality is a meta-operation on types. We saw

this operation in CLL, where (X ⊗Y )
⊥

= X⊥ ` Y
⊥

, for example. But what
is duality in the λµ calculus, where ` is not a type operator? We could try to
encode duality as negation ¬A, except that negation is not strictly involutive.

And yet, for any type A of linear λµ, we may imagine its syntactic dual A⊥,
not as a meta-operation, but as an explicit constructor. If we respect the fact

that A⊥
⊥

is syntactically equal to A, we find that there are two disjoint classes of
propositions: negative propositions A−, which are syntactic duals, and positive
propositions A+, which correspond to the original types.4

We assign names to the duals of various connectives to simplify their pre-

sentation. In the style of CLL, we write A⊥ ` B
⊥

for (A ⊗ B)
⊥

where A and B
are positive types. Thus each connective gets attributed both a positive and a
negative copy, as summarized in Figure 5. Seen another way, the positive and
negative types are axiomatized as follows:

A+ ::= 1 | A1
+ ⊗A2

+ | 0 | A1
+ ⊕A2

+

A− ::= ⊥ | A1
− ` A2

− | > | A1
− & A2

−

4 Drawing the connection to category theory, every object A ∈ C has a dual object
Aop ∈ Cop. Thus A and its dual live in distinct categories.



Operator Positive Copy Negative Copy

1 1 ⊥
⊗ ⊗ `
0 0 >
⊕ ⊕ &
¬ ↓ ↑

Fig. 5. Positive and negative copies of linear operators

Negation. To incorporate negation into this analysis, first consider that it is
self-dual: (¬A)

⊥
= ¬A⊥. Close examination tells us that these are really two

distinct copies of negation, one positive and one negative.
However, this presentation of negation is incompatible with the one-sided

sequent calculus, because negation is contravariant : it moves a proposition from
one side of the judgment to the other. In the presence of syntactic duality, we
could imagine negation being partitioned into two parts: the contravariant dual-
ity operator (−)

⊥
, along with a covariant shift operator written ↓, which turns

a negative proposition into a positive proposition. The left and right negation
rules from the two-sided formulation might instead be written as follows, where

¬A+ = ↓(A+)
⊥

:
Γ ` A, Π

Γ,A⊥ ` Π
Γ, ↓A⊥ ` Π

Γ,A ` Π
Γ ` A⊥, Π

Γ ` ↓A⊥, Π
The shift operator ↓, as well as its dual copy ↑, explicitly change the polarity

of their argument. These fit nicely into Figure 5, and they augment the syntax
of types as follows:

A+ ::= · · · | ↓A−

A− ::= · · · | ↑A+

Thus the act of dualizing a logic with negation naturally generates polar-
ized types, in the sense of Girard (1991). This relationship between negation
and polarization is not new. It has been explored by Laurent and Regnier (2003)
relating polarization procedures of classical logic to CPS translations using nega-
tion. Similarly, Laurent (2003) gave a semantics of the (non-linear) λµ-calculus
in terms of polarized proof nets. Finally, Zeilberger (2008) takes negation to be
a primitive operator in his polarized logic and observes that ¬A+ is isomorphic

to ↓(A+)
⊥

.

4.2 Polarizing CP

It remains to see how polarization can be incorporated into the type system of
CP. This question has already been addressed, at least in the case of intuition-
istic session types, by Pfenning and Griffith (2015). In their setting, channels



y ↔ x ` y : (A+)⊥; x : A+
ax

P1 ` ∆1;Π1, x : A P2 ` x : A⊥,∆2;Π2

νx .〈P1 | P2〉 ` ∆1,∆2;Π1, Π2
cut

P ` ∆, x : A−;Π

↓x .P ` ∆; x : ↓A−, Π ↓
P ` ∆; x : A+, Π

↑x .P ` ∆, x : ↑A+;Π
↑

x [].0 ` ·; x : 1
1

P ` ∆;Π

x ().P ` x : ⊥,∆;Π
⊥

P1 ` ∆1;Π1, y : A+ P2 ` ∆2;Π2, x : B+

x [y ].(P1 | P2) ` ∆1,∆2;Π1, Π2, x : A+ ⊗ B+
⊗

P ` y : A−, x : B−,∆;Π

x (y).P ` x : A− ` B−,∆;Π
`

(no 0 rule)
x .case() ` x : >,∆;Π

>

P ` ∆;Π, x : Ai
+

x [inji ].P ` ∆;Π, x : A1
+ ⊕A2

+ ⊕
P1 ` x : A−,∆;Π P2 ` x : B−,∆;Π

x .case(P1 | P2) ` x : A− & B−,∆;Π
&

Fig. 6. CP±

are directed, where positive channels are outgoing, and negative channels are
incoming. Shift operations explicitly change the direction of the channel.

This intuition carries over naturally to the classical case. We define a term
language CP±, pronounced “CP more or less,” to be a polarized version of
CP. The syntax of processes is identical to that of CP, with the addition of
two actions for shifting the direction of a channel. The syntax of processes is as
follows:

P := · · · | ↓x .P | ↑x .P

The process ↓x .P offers an output channel x : ↓A−, which sends a special “shift”
message over x , before reversing the direction of the channel and continuing with
an input channel x : A−. Similarly, ↑x .Q waits to receive a shift message on x ,
before treating x as output in Q .

Judgments of CP± have the form P ` ∆;Π, where ∆ consists of negative
(incoming) channels, and Pi consists of positive (outgoing) channels. The typing
rules are given in Figure 6.

The operational semantics of CP± augments the semantics of CP with rules
for the shift operators. The β and η rules are as follows:

νx .〈↓x .P1 | ↑x .P2〉 →β νx .〈P2 | P1〉

(y ↔ x ` y : ↑A+; x : ↓(A+)
⊥
)→η ↓x . ↑y .y ↔ x

The structural equivalences ≡s in Equation (1) are no longer applicable in CP±.
The reason is that only one of νx .〈P1 | P2〉 and νx .〈P2 | P1〉 is ever well-typed
in CP±, and similarly for x ↔ y and y ↔ x .



Action contexts in CP± are extended with the shift operators.

Ca ::= · · · | ↓x .� | ↑x .�

4.3 Evaluation Order

Taking the commuting conversion rules verbatim from CP results in a similarly
nondeterministic reduction strategy for CP±. However, CP± has the ability to
express other reduction strategies. In particular, we can specify either a call-by-
name and call-by-value evaluation strategy in a way similar to Wadler’s dual
calculus (2003).

To illustrate what we mean by CBV and CBN in this context, consider the
following encoding of implication as the polarized type ↓(A+( B−). Application
can be encoded as follows:

P ` x : ↓(A+( B−)

Q ` y : A+ z ↔ x ` z : B−; x : (B−)
⊥

x [y ].(Q | z ↔ x ) ` z : B−; x : A+ ⊗ (B−)
⊥

↑x .x [y ].(Q | z ↔ x ) ` z : B−, x : ↑(A+ ⊗ (B−)
⊥

); ·
νx .〈P | ↑x .x [y ].(Q | z ↔ x )〉 ` z : B−; ·

The process P is the equivalent of a λ-abstraction if it has the form ↓x .x (y).P ′ for

P ′ ` x : B−, y : (A+)
⊥

. In this case, the application reduces to νy .〈Q | P ′{z/x}〉.
It is here we can talk about evaluation order. A call-by-value evaluation order

reduces the argument Q before continuing in the evaluation of the result z : B−.
We can achieve this by prioritizing commuting conversions on the right of a
cut over conversions on the left. This can be done by refining the definition of
evaluation contexts.

Ce := νx .〈P | �〉 | νx .〈� | Px 〉

where Px is any process starting with an action on x .
Similarly, a call-by-name evaluation order tries to compute z : B− before

evaluating the argument Q , by prioritizing conversions on the left:

Ce := νx .〈� | P〉 | νx .〈Px | �〉.

5 Equational Correspondence

The dualization described in the previous section shows how typing judgments
in the linear λµ-calculus relate to typing judgments in a CP-like language. But
the structure of the typing judgments says nothing about the equivalence of the
operational semantics of the two languages. The notion of equational correspon-
dence (Sabry and Felleisen, 1993) makes this relationship formal.



Γ ` t : A | Π
t(x) ` Γ⊥;Π, x : A

Γ ` c | Π
c∗ ` Γ⊥;Π

y(x) := y ↔ x

(let y = t in e)(x) := νy .〈t(y) | e(x)〉

(µα.c)(x) := (c∗){x/α}

([α]t)∗ := (t(x)){α/x}

(λx .c)(x) := ↓x .c∗

(t1 t2)∗ := νx .〈t1(x) | ↑x .t2(x)〉

()(x) := x [].0

(let () = t in e)(x) := νy .〈t(y) | y().e(x)〉

(t1, t2)(x) := x [x ′].(t1
(x ′) | t2(x))

(let (y ′, y) = t in e)(x) := νy .〈t(y) | y(y ′).e(x)〉

(case t of ())(x) := νy .〈t(y) | y .case()〉

(inji t)
(x) := x [inji ].t

(x)

(case t of (inj1 y → e1, inj2 y → e2))(x) :=

νy .〈t(y) | y .case(e1
(x) | e2(x))〉

P ` ∆;Π

∆⊥ ` (P)∗ | Π

(y ↔ x )∗ := [x ]y

(νy .〈P1 | P2〉)∗ := let y = (P1)∗ in (P2)∗

(↓x .P)∗ := [x ]λx .(P)∗

(↑y .P)∗ := y ((P)(y))

(x [].0)∗ := [x ]()

(y().P)∗ := let () = y in (P)∗

(x [y ].(P1 | P2))∗ := [x ]((P1)∗, (P2)∗)

(y(y ′).P)∗ := let (y ′, y) = y in (P)∗

(y .case())∗ := case y of ()

(x [inji ].P)∗ := [x ]inji (P)∗

(y .case(P1 | P2))∗ :=

case y of (inj1 y → (P1)∗, inj2 y → (P2)∗)

Fig. 7. Equational correspondence between linear λµ and CP±

Definition 3. Let L1 and L2 be term languages with equality, written t1 =1 t ′1
and t2 =2 t ′2. Suppose that there exist two maps F1 and F2 as shown below. These
maps form an equational correspondence if the following conditions hold:

L1 L2

F1

F2

1. If t1 =1 t ′1 then F1 (t1) =2 F1 (t ′1).
2. If t2 =2 t ′2 then F2 (t2) =1 F2 (t ′2).
3. For all terms t1 ∈ L1, t1 =1 F2 (F1 (t1)).
4. For all terms t2 ∈ L2, t2 =2 F1 (F2 (t2)).

We thus come to our main theorem:

Theorem 4. Linear λµ equationally corresponds with CP±.

Proof (Sketch).
We start by defining translations, shown in Figure 7, between the two lan-

guages. First, for Γ ` e : Θ | Π, we define e(x) to be a process so that
e(x) ` Γ⊥;Π, x : Θ. When e is a command c we write c∗.

Next, for P ` ∆;Π, we define (P)∗ to be a command so that ∆⊥ ` (P)∗ | Π.
The classes of term and continuation variables are collapsed in CP±, so we move
between them freely in the translations.



The remainder of the proof must show that the four conditions in the defi-
nition of equational correspondence hold. But condition (4), which says that all
λµ expressions e satisfy e = (e(α))∗, is not quite right for terms, because every
(P)∗ is a command. Instead we amend the condition to say that for every term
t , we have t = µα.(t (α))∗. ut

6 Discussion

6.1 Comparing Classical Type Systems

Unlike the simply-typed λ-calculus for intuitionistic logic, there is no canonical
type system for classical logic. Instead, there are a number of candidate type
systems corresponding to different well-known formulations of classical logic.

• Classical logic can be formulated as intuitionistic logic plus the property of
double negation elimination. The λC-calculus (Griffin, 1990) is a typed λ-
calculus with the addition of the control operator C, of type ((A → ⊥) →
⊥)→ A.
• Classical logic can alternatively be formulated as intuitionistic logic with

multiple conclusions, which corresponds to the structure of the λµ-calculus
(Parigot, 1992).

• The logic may be in natural deduction or sequent calculus form. Curien
and Herbelin’s λµµ̃-calculus (2000), which is also called System L (Spiwack,
2014), and Wadler’s dual calculus (2003) are variations on equivalent sequent
calculus formulations of λµ.

These systems are all related by equational correspondences—de Groote
(1994) proves the correspondence between λµ and λC , and Wadler (2005) proves
the correspondence between λµ and the dual calculus. Our work continues in this
tradition by indicating that the linear versions of these systems (for example,
Spiwack’s Linear L, 2014) are also equivalent to CP±.

6.2 A Syntax for Tensor Logic

Melliès and Tabareau introduce tensor logic in the setting of game-theoretic
semantics for linear logic. While they study the denotational semantics of the
logic extensively and provide translations from CLL, Melliès and Tabareau do
not give proof terms for either of the two formulations—two-sided or one-sided.

However, proof terms are not hard to imagine in the style of λµ and CP±.
The two-sided perspective types a (strict) sublanguage of linear λµ with nega-
tion but without the µ operator. The result is a simply-typed λ-calculus where
the return type of every function is ⊥, as described by Lafont et al. (1993). The
one-sided perspective of tensor logic can similarly type a (strict) sublanguage
of CP±, where each process offers at most one output channel. This formula-
tion is equivalent to Spiwack’s Polarized L (2014), and corresponds to a focused
polarized logic, as opposed to CP±, which is unfocused.



6.3 Session Types and Linear Logic

Linear logic has long been explored as a type system for concurrent program-
ming, especially process calculi in the style of the π-calculus (Bellin and Scott,
1994; Beffara, 2006; Kobayashi et al., 1999). Caires and Pfenning (2010) present
an elegant interpretation of an (intuitionistic) linearly-typed fragment of the π-
calculus by interpreting linear propositions as session types (Honda, 1993; Honda
et al., 1998) in a calculus they call π-DILL. The connections between session
types and linear logic have been studied in the past (Mazurak and Zdancewic,
2010; Gay and Vasconcelos, 2010) but had not been formally compared. Wadler
(2014) makes the connection formal by exhibiting a translation between CP, a
classical variant of π-DILL, and GV, a variation of the session-typed calculus
of Gay and Vasconcelos (2010). Lindley and Morris (2014, 2015) expand this
translation to a bisimulation between CP and GV.

6.4 Variations on CP

The process calculus described in Section 2 varies from Wadler’s original formu-
lation of CP in a few significant ways. The first is that Wadler’s processes only
communicate at the top level, never under prefix actions. This means that nor-
mal forms consist of any processes that do not begin with a cut. Following Pérez
et al. (2014), we allow communication to take place at any point in a process,
even if another channel is waiting to synchronize. For example, in the process

x ().νy .〈y [].0 | y().P〉,

communication takes place over the channel y even though x sends a message
first. Operationally, the difference is the exclusion of the structural rule in Equa-
tion (2). Wadler’s equational theory is thus finer-grained than ours, and does
not reach the level of behavioral equivalence.

In the same vein, Wadler does not equate the processes defined by our third
class of commuting conversions. Following Bellin and Scott (1994) and Pérez
et al. (2014), behavioral equivalence means that the order of non-interfering
prefix actions is unobservable, and should be equated.

The treatment of η-expansions for link forwarding is another departure from
Wadler’s presentation. Like Wadler, we allow link forwarding at arbitrary type
for the sake of expressibility. However, just as in the λ-calculus, η-expansion re-
duces the allowable normal forms by equating behaviorally equivalent processes.

The operational semantics we define for CP in Section 2 extends naturally
to CP±. It is worth noting, however, that the equational correspondence proved
in Section 5 relies on the second class of commuting conversions (cut-cut) but
not the third (action-action). Therefore it would still be applicable using a
semantics closer to Wadler’s original presentation (2014).

Finally, Wadler’s presentation of CP includes the linear exponentials ! and ?,
as well as polymorphism ∀ and ∃. In this paper we work with the linear “core” of
CP, excluding the exponentials for the sake of clarity. To incorporate polymor-
phism into our presentation, we would need to extend types with type variables.



In that case, communication would eliminate all cuts, but not necessarily links
at atomic type.

6.5 How Much is “More or Less”?

In the introduction we made the claim that linear λµ was “more or less” CP,
and we made the statement precise by exhibiting CP±. However, we haven’t
addressed exactly how much CP± is “more or less” CP.

We can easily define an erasure operation |−| on both types and processes
that removes all shift operations. Trivially, if P ` ∆;Π then |P | ` |∆|, |Π|. As
Zeilberger (2008) shows for a different polarized term syntax, the completeness
of such an erasure can be summarized as follows: If Q ` |∆|, |Π| in CP, then
there exists a CP± process P such that P ` ∆;Π and |P | = Q . In addition, we
would require that this “expansion” of Q respects equalities in a similar way to
equational correspondences. However, even describing the necessary relationship
in detail is beyond the scope of this work.

Meanwhile, CP± offers operational behaviors not expressible in CP. In par-
ticular, CP± has the ability to set a particular reduction strategy such as CBV,
CBN, or something in between. Once an evaluation strategy is fixed, the types
dictate the evaluation of any particular process. The programmer thus has full
control over scheduling in CP±, while in CP the programmer has no control.
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