
Foundations of Quantum Computational Advantage

May 1, 2024

Programming Clifford Unitaries
with Symplectic Types
Jennifer Paykin (Intel Labs)

with Sam Winnick (University of Waterloo)

Intel ConfidentialDepartment or Event Name 2Programming Cliffords with Symplectic TypesFoQaCiA 2024 2

Quantum Programming Languages

Gate-based programming:
• Qiskit, Circ, Q#, tket, Intel Quantum SDK

Beyond gate-based programming:
• Identify mathematical abstractions

• Build a language that harnesses those abstractions

• Express algorithms naturally and enable new ideas

Intel ConfidentialDepartment or Event Name 3Programming Cliffords with Symplectic TypesFoQaCiA 2024 3

Cliffords as automorphisms on the Pauli group

Unitary matrices generated by
𝑋, 𝑌, 𝑍, 𝐻, 𝑆, 𝐶𝑁𝑂𝑇

Projective Clifford group:

Automorphisms on the Pauli group
𝑃 ↦ 𝑃′

that fix the center

Unitary matrices 𝑈 satisfying

∀𝑃 ∈ 𝒫𝑛,
𝑈𝑃𝑈† ∈ 𝒫𝑛

Pauli group (𝒫)

𝑋 × 𝑋 = 𝐼
 𝑋 × 𝑌 = 𝑖𝑍

 𝑋 × 𝑍 = −𝑖𝑌
𝑋 × 𝐼 = 𝑋

Intel ConfidentialDepartment or Event Name 4Programming Cliffords with Symplectic TypesFoQaCiA 2024 4

Main Idea

Clifford unitaries

expressed as functions
on qudit Pauli operators

that satisfy certain properties
(center-fixing automorphism)

Intel ConfidentialDepartment or Event Name 5Programming Cliffords with Symplectic TypesFoQaCiA 2024 5

Example
Idea:

Clifford unitaries
expressed as functions

on Pauli operators
that satisfy certain properties

H

h (P : PauliType) : Phase PauliType =

case P of

inX -> ?

 inZ -> ?

PauliType
=

type of single-qubit Pauli encodings

case ? of …
=

break up the input into basis elements

inX/inZ
=

syntax referring to 𝑋/𝑍 Paulis

𝐻𝑋𝐻 = (−1)0𝑍

Intel ConfidentialDepartment or Event Name 6Programming Cliffords with Symplectic TypesFoQaCiA 2024 6

Example
Idea:

Clifford unitaries
expressed as functions

on Pauli operators
that satisfy certain properties

h (P : PauliType) : Phase PauliType =

case P of

inX ->

 inZ -> ?

H

𝐻𝑋𝐻 = −1 0𝑍<0> inZ

Intel ConfidentialDepartment or Event Name 7Programming Cliffords with Symplectic TypesFoQaCiA 2024 7

Example
Idea:

Clifford unitaries
expressed as functions

on Pauli operators
that satisfy certain properties

h (P : PauliType) : Phase PauliType =

case P of

inX -> <0> inZ

 inZ ->

H

<0> inX 𝐻𝑍𝐻 = −1 0𝑋

Intel ConfidentialDepartment or Event Name 8Programming Cliffords with Symplectic TypesFoQaCiA 2024 8

Example

cnot (P : PauliType ⊕ PauliType) : Phase (PauliType ⊕ PauliType) =

 case P of

 in1 Q -> case Q of

 inX ->

 inZ ->

 in2 Q -> case Q of

 inX ->

 inZ ->

𝐶𝑁𝑂𝑇 𝑍 ⊗ 𝐼 𝐶𝑁𝑂𝑇 = 𝑍 ⊗ 𝐼<0>(in1 inZ)

Intel ConfidentialDepartment or Event Name 9Programming Cliffords with Symplectic TypesFoQaCiA 2024 9

cnot (P : PauliType ⊕ PauliType) : Phase (PauliType ⊕ PauliType) =

 case P of

 in1 Q -> case Q of

 inX ->

 inZ -> <0>(in1 inZ)

 in2 Q -> case Q of

 inX ->

 inZ ->

Example

𝐶𝑁𝑂𝑇 𝑋 ⊗ 𝐼 𝐶𝑁𝑂𝑇 = X ⊗ 𝑋<0>(in1 inX) * <0>(in2 inX)

Intel ConfidentialDepartment or Event Name 10Programming Cliffords with Symplectic TypesFoQaCiA 2024 10

Example

cnot (P : PauliType ⊕ PauliType) : Phase (PauliType ⊕ PauliType) =

 case P of

 in1 Q -> case Q of

 inX -> <0>(in1 inX) * <0>(in2 inX)

 inZ -> <0>(in1 inZ)

 in2 Q -> case Q of

 inX -> <0>(in2 inX)

 inZ -> <0>(in1 inZ) * <0>(in2 inZ)

Intel ConfidentialDepartment or Event Name 11Programming Cliffords with Symplectic TypesFoQaCiA 2024 11

Desiderata

1. Functions implement Cliffords:

 center-fixing automorphisms on the Pauli group

 Type system for ensuring functions are indeed automorphisms.

notClifford (P : PauliType) : Phase PauliType =

case P of

inX -> <0> inX

inZ -> <0> inX

Type-checking
Error:

The inX and inZ
branches of the
case statement

should
anticommute.

Intel ConfidentialDepartment or Event Name 12Programming Cliffords with Symplectic TypesFoQaCiA 2024 12

Desiderata

2. All Cliffords can be represented

Intel ConfidentialDepartment or Event Name 13Programming Cliffords with Symplectic TypesFoQaCiA 2024 13

Desiderata

3. (Qubit) Clifford functions can be compiled to circuits

h (P : PauliType) : Phase PauliType =

case P of

inX -> <0>inZ

inZ -> <0>inX

Pauli Tableau/Frame
𝑋 𝑍

H

Paykin, Schmitz, et al. PCOAST: A Pauli-based quantum circuit optimization framework. QCE 2023.

PCOAST

Aaronson and Gottesman, “Improved simulation of stabilizer circuits,” 2004.

Intel ConfidentialDepartment or Event Name 14Programming Cliffords with Symplectic TypesFoQaCiA 2024 14

Overview

1. Background on encodings of the Pauli group

2. Projective Cliffords as symplectic functions over Pauli
encodings

3. Type system for symplectic functions

Intel ConfidentialDepartment or Event Name 15Programming Cliffords with Symplectic TypesFoQaCiA 2024 15

Background: the Pauli group

Single-qubit Paulis (𝑝)

𝑋 =
0 1
1 0

 Y =
0 −𝑖
𝑖 0

𝑍 =
1 0
0 −1

 I =
1 0
0 1

Pauli group (𝒫)

𝑋 × 𝑋 = 𝐼
 𝑋 × 𝑌 = 𝑖𝑍

 𝑋 × 𝑍 = −𝑖𝑌
𝑋 × 𝐼 = 𝑋

⋯

Symplectic Form
𝜔: 𝒫 ⊗ 𝒫 → ℤ2

encodes commutativity of Paulis
 𝑃1 × 𝑃2 = (−1)𝜔(𝑃1,𝑃2)𝑃2 × 𝑃1

𝜔 𝑋, 𝑌 = 𝜔 𝑌, 𝑍 = 𝜔 𝑍, 𝑋 = 1
𝜔 𝑃, 𝑃 = 0
𝜔 𝐼, 𝑃 = 0

Any two Paulis either commute or
anti-commute

Intel ConfidentialDepartment or Event Name 16Programming Cliffords with Symplectic TypesFoQaCiA 2024 16

Background: the Pauli algebra

Every member of the Pauli group can
be written as

𝑖𝑟Δ[𝑥,𝑧]

where 𝑟 ∈ ℤ4 and 𝑥, 𝑧 ∈ ℤ2 and
Δ 𝑥,𝑧 = 𝑖𝑥𝑧𝑋𝑥𝑍𝑧

Let’s write this 𝑟 𝑥, 𝑧 .

Example:

“Y” = 0 [1,1]

since 𝑌 = 𝑖𝑋𝑍 = 𝑖0𝑖1𝑋1𝑍1.

Symplectic form

𝜔 𝑟1 𝑥1, 𝑧1 , ⟨𝑟2⟩ 𝑥2, 𝑧2 = 𝑥1𝑧2 − 𝑧1𝑥2

Example:

𝜔("X", "Y") =𝜔 ⟨0⟩ 1,0 , ⟨0⟩ 1,1
= 1 ∗ 1 − 0 ∗ 1 = 1

Intel ConfidentialDepartment or Event Name 17Programming Cliffords with Symplectic TypesFoQaCiA 2024 17

Background: generalizing the Pauli algebra

Generalize to 𝑛-qubit Paulis 𝒫𝑛

𝑝0 ⊗ ⋯ ⊗ 𝑝𝑛−1

Algebra:
𝑟 Ԧ𝑥, Ԧ𝑧

= 𝑖𝑟Δ[𝑥0,𝑧0] ⊗ ⋯ ⊗ Δ 𝑥𝑛−1,𝑧𝑛−1

= 𝑖𝑟𝑖 Ԧ𝑥⋅ Ԧ𝑧(𝑋𝑥0 ⊗ ⋯ ⊗ 𝑋𝑥𝑛−1)(𝑍𝑧0 ⊗ ⋯ ⊗ 𝑍𝑧𝑛−1)

where 𝑟 ∈ ℤ4,
Ԧ𝑥 = 𝑥0, … , 𝑥𝑛−1 ∈ ℤ2

𝑛

Ԧ𝑧 = [𝑧0, … , 𝑧𝑛−1] ∈ ℤ2
𝑛

𝑉 = vectors in the Pauli algebra
encoding over ℤ2

 aka 𝑉 = ℤ2
𝑛 ⊕ ℤ2

𝑛

Symplectic Form
𝜔: 𝑉 ⊗ 𝑉 → ℤ2

𝜔 𝑥1, 𝑧1 , 𝑥2, 𝑧2 = 𝑥1 ⋅ 𝑧2 − 𝑧1 ⋅ 𝑥2

Intel ConfidentialDepartment or Event Name 18Programming Cliffords with Symplectic TypesFoQaCiA 2024 18

Background: generalizing the Pauli algebra

Generalize to 𝑛-qu𝒅it Paulis 𝑃𝑑,𝑛

𝑋 𝑟 = | 𝑟 + 1) mod 𝑑
𝑍 𝑟 = 𝜁𝑟|𝑟⟩ where 𝜁𝑑 = 1.

Algebra:
𝑟 Ԧ𝑥, Ԧ𝑧

=𝜁𝑟Δ[Ԧ𝑥, Ԧ𝑧] = 𝜁𝑟𝜁
1

2
Ԧ𝑥⋅ Ԧ𝑧𝑋 Ԧ𝑥𝑍 Ԧ𝑥

where

𝑟 ∈ ½ ℤ𝑑′

d′= ቊ
𝑑 𝑑 odd

2𝑑 𝑑 even

Ԧ𝑥 = 𝑥0, … , 𝑥𝑛−1 ∈ ℤ𝑑
𝑛

Ԧ𝑧 = [𝑧0, … , 𝑧𝑛−1] ∈ ℤ𝑑
𝑛

𝑉 = vectors in the Pauli algebra
encoding over ℤ𝑑

 aka 𝑉 = ℤ𝑑
𝑛 ⊕ ℤ𝑑

𝑛

Symplectic Form
𝜔: 𝑉 ⊗ 𝑉 → ℤ𝑑

𝜔 𝑥1, 𝑧1 , 𝑥2, 𝑧2 = 𝑥1 ⋅ 𝑧2 − 𝑧1 ⋅ 𝑥2

Intel ConfidentialDepartment or Event Name 19Programming Cliffords with Symplectic TypesFoQaCiA 2024 19

Theorem

The set of projective Cliffords 𝑃𝐶𝑙𝑑′/𝑑
′

≅
The set of pairs of functions 𝛿, 𝜙 where

• 𝛿: 𝑉′ →
1

2
ℤ𝑑′ is a linear transformation;

• 𝜙: 𝑉′ → 𝑉′ is a symplectomorphism---a linear isomorphism that respects the
symplectic form; and

• the function Δ𝑣 ↦ 𝜁𝛿(𝑣)Δ𝜙(𝑣) is right-definite.

𝑉′ = vectors in the Pauli algebra encoding
 vector space over 𝑅′ = ℤ𝑑′
1

2
ℤ𝑑′ = coefficients of 𝜁 in the Pauli algebra encoding

 where 𝜁1/2 is a 𝑑′-th root of unity

Δ𝑣 ↦ 𝜁𝛿(𝑣)Δ𝜙(𝑣)

Intel ConfidentialDepartment or Event Name 20Programming Cliffords with Symplectic TypesFoQaCiA 2024 20

Theorem

The set of projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′

≅
Functions over the Pauli algebra where
• 𝜇: 𝑉 → ℤ𝑑 is an 𝑅-linear map; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism---a linear isomorphism satisfying

𝜔 𝜓 𝑃1 , 𝜓 𝑃2 = 𝜔(𝑃1, 𝑃2)

Proof sketch:

Projective Clifford → Encoding (𝛿, 𝜙) over V′

 → Compact encoding (𝜇, 𝜓) over 𝑉
 → Encoding (𝛿, 𝜙) over 𝑉′
 → Projective Clifford

𝑉 = vectors in the Pauli algebra
encoding over ℤ𝑑

 aka 𝑉 = ℤ𝑑
𝑛 ⊕ ℤ𝑑

𝑛

Intel ConfidentialDepartment or Event Name 21Programming Cliffords with Symplectic TypesFoQaCiA 2024 21

Desiderata

1. Functions implement Cliffords: automorphisms on the Pauli
group
• Type system for ensuring functions are automorphisms

1a. Functions implement (𝜇, 𝜓)
• Type system for ensuring properties are respected

2. All Cliffords can be represented

2a. All such functions can be represented

3. All functions can be compiled to circuits

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′

≅
Pairs of functions 𝜇, 𝜓 where
• 𝜇: 𝑉 → ℤ𝑑 is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.

Intel ConfidentialDepartment or Event Name 22Programming Cliffords with Symplectic TypesFoQaCiA 2024 22

Path towards a type system

1. Type system for free modules over a ring, with biproducts

2. Type system for symplectic morphisms—linear
transformations that respect the symplectic form

3. Type system for Paulis 𝑟 𝑣

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′

≅
Pairs of functions 𝜇, 𝜓 where
• 𝜇: 𝑉 → ℤ𝑑 is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.

Intel ConfidentialDepartment or Event Name 23Programming Cliffords with Symplectic TypesFoQaCiA 2024 23

Defining a type system

1. What are types?

2. What are values of a given
type?

3. What properties should
well-typed expressions
satisfy?

4. What are the typing rules
for well-typed expressions?

Module Types 𝝉

𝑅

𝜏1 ⊕ 𝜏2

Types: free finitely-generated 𝑅-modules

Module Types 𝝉 Values

𝑅 Constants 𝑟 ∈ 𝑅

𝜏1 ⊕ 𝜏2 Tuples [𝑣1, 𝑣2]

Values: vectors in the 𝑅-module

Expressions: linear transformations

𝑥: 𝜏 ⊢ 𝑒 ∶ 𝜏′
𝑒[𝑐1 ⋅ 𝑣1 + 𝑐2 ⋅ 𝑣2]

≡
𝑐1 ⋅ 𝑒 𝑣1 + 𝑐2 ⋅ 𝑒 𝑣2

Intel ConfidentialDepartment or Event Name 24Programming Cliffords with Symplectic TypesFoQaCiA 2024 24

1. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

Γ ⊢ 𝑒 ∶ 𝜏′
Γ ≔ 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

𝜏 ≔ 𝑅 ∣ 𝜏1 ⊕ 𝜏2

Arrighi & Dowek. Lineal: A linear-algebraic lambda-calculus. LMCS 2017.
Díaz-Caro & Dowek. A new connective in natural deduction, and its application to quantum computing. TCS 2023.
Díaz-Caro & Dowek. A linear linear lambda-calculus. MSCS 2024.

relevant type system:
• contraction: variables can be duplicated
• no weakening: variables cannot be discarded

Intel ConfidentialDepartment or Event Name 25Programming Cliffords with Symplectic TypesFoQaCiA 2024 25

1. Semantics

𝑥: 𝜏 ⊢ 𝑒 ∶ 𝜏′

𝒞: category of
𝑅-modules

𝑥: 𝜏 ⊢ 𝑒′: 𝜏′

categorical
semantics

operational
semantics

𝜏 𝜏′

𝑒

𝑒′

𝑥: 𝜏 ⊢ 𝑒 ≡ 𝑒′: 𝜏′equivalence
relation

Intel ConfidentialDepartment or Event Name 26Programming Cliffords with Symplectic TypesFoQaCiA 2024 26

Path towards a type system

1. Type system for free modules over a ring, with biproducts

2. Type system for symplectic morphisms—linear
transformations that respect the symplectic form

3. Type system for Paulis 𝑟 𝑣

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′

≅
Pairs of functions 𝜇, 𝜓 where
• 𝜇: 𝑉 → ℤ𝑑 is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.

Intel ConfidentialDepartment or Event Name 27Programming Cliffords with Symplectic TypesFoQaCiA 2024 27

2. Type system for symplectic morphisms

Symplectic Types 𝝈 Values

𝑸 = 𝑅 ⊕ 𝑅 Single-qudit vector [𝑥, 𝑧]
encoding 𝛥[𝑥,𝑧]

𝜎1 ⊕ 𝜎2 Tuples [𝑣1, 𝑣2]

Types: free finitely-generated 𝑅-modules for
which symplectic form is defined

Values: vectors in the 𝑅-module

Expressions: linear transformations
that respect symplectic form

𝑥: 𝜎 ⊢𝑆 𝑒 ∶ 𝜎′

𝜔(𝑒 𝑣1 , 𝑒[𝑣2])
≡

𝜔(𝑣1, 𝑣2)

Intel ConfidentialDepartment or Event Name 28Programming Cliffords with Symplectic TypesFoQaCiA 2024 28

2. Symplectic type system

a1: 𝜏1, … , 𝑎𝑛: 𝜏𝑛 ; b: 𝜎 ⊢𝑆 𝑒 ∶ 𝜎

Respect symplectic formLinear transformation

Symplectic
types 𝝈

Vector spaces used
in the Pauli algebra
(dimension 𝟐𝒏)

𝑸 =
𝑅 ⊕ 𝑅

Single-qudit vector
[𝑥, 𝑧] encoding 𝛥[𝑥,𝑧]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit
vectors

Module
Types 𝝉

Values

𝑅 Constants 𝑟 ∈ 𝑅

𝜏1 ⊕ 𝜏2 Tuples [𝑣1, 𝑣2]

Intel ConfidentialDepartment or Event Name 29Programming Cliffords with Symplectic TypesFoQaCiA 2024 29

2. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

* 𝜔𝜎(𝑒1, 𝑒2) Symplectic form

Γ1 ⊢ 𝑒1: 𝜎 Γ2 ⊢ 𝑒2: 𝜎

Γ1 ∪ Γ2 ⊢ 𝜔𝜎 𝑒1, 𝑒2 ∶ 𝑅

𝜔𝑸 𝑟1, 𝑟1
′ , 𝑟2, 𝑟2

′ → 𝑟1𝑟2
′ − 𝑟1

′𝑟2

𝜔𝜎1⊕𝜎2
𝑣1, 𝑣1

′ , 𝑣2, 𝑣2
′ → 𝜔𝜎1

𝑣1, 𝑣2 + 𝜔𝜎2
(𝑣1

′ , 𝑣2
′)

Symplectic
types 𝝈

Vector spaces used in
the Pauli algebra
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x]
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors

Intel ConfidentialDepartment or Event Name 30Programming Cliffords with Symplectic TypesFoQaCiA 2024 30

2. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

* case 𝑒 of {𝑖𝑛x → 𝑒x ∣ 𝑖𝑛z → 𝑒z} Pauli case analysis

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

𝜔𝜎(𝑒1, 𝑒2) Symplectic form

Symplectic
types 𝝈

Vector spaces used in
the Pauli algebra
(dimension 𝟐𝒏)

𝑸 =
𝑅 ⊕ 𝑅

Single-qudit vector [z,x]
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors

Γ; Δ ⊢𝑆 𝑒 ∶ 𝑸 Γ′; Δ′ ⊢𝑆 𝑒𝑥: 𝜎 Γ′; Δ′ ⊢𝑆 𝑒𝑧: 𝜎 𝜔𝜎 𝑒𝑥 , 𝑒𝑧 ≡ 1

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛𝑋 → 𝑒x 𝑖𝑛Z → 𝑒z : 𝜎

𝑖𝑛𝑧 = 1,0
𝑖𝑛𝑥 = [0,1]

Intel ConfidentialDepartment or Event Name 31Programming Cliffords with Symplectic TypesFoQaCiA 2024 31

2. Expressions

Γ; Δ ⊢𝑆 𝑒 ∶ 𝑸 Γ′; Δ′ ⊢𝑆 𝑒𝑥: 𝜎 Γ′; Δ′ ⊢𝑆 𝑒𝑧: 𝜎 𝜔𝜎 𝑒𝑥 , 𝑒𝑧 ≡ 1

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛𝑋 → 𝑒x 𝑖𝑛Z → 𝑒z : 𝜎

h (P : QType) : QType =

case P of

inX -> inZ

inZ -> inX

𝜔 𝑖𝑛𝑍, 𝑖𝑛𝑋 = 𝜔 0,1 , 1,0 = 0 − 1 = 1 (𝑚𝑜𝑑 2)

Symplectic
types 𝝈

Vector spaces used in
the Pauli algebra
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x]
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors

Intel ConfidentialDepartment or Event Name 32Programming Cliffords with Symplectic TypesFoQaCiA 2024 32

2. Expressions

𝜔 𝑖𝑛𝑍, 𝑖𝑛𝑍 = 𝜔 0,1 , 0,1 = 0 − 0 ≠ 1

notSymplectic(x : QType) : QType =

case x of

inX -> inZ

 inZ -> inZ

Γ; Δ ⊢𝑆 𝑒 ∶ 𝑸 Γ′; Δ′ ⊢𝑆 𝑒𝑥: 𝜎 Γ′; Δ′ ⊢𝑆 𝑒𝑧: 𝜎 𝜔𝜎 𝑒𝑥 , 𝑒𝑧 ≡ 1

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛𝑋 → 𝑒x 𝑖𝑛Z → 𝑒z : 𝜎

Symplectic
types 𝝈

Vector spaces used in
the Pauli algebra
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x]
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors

Intel ConfidentialDepartment or Event Name 33Programming Cliffords with Symplectic TypesFoQaCiA 2024 33

2. Expressions

Symplectic
types 𝝈

Vector spaces used in
the Pauli algebra
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x]
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors

Γ; Δ ⊢𝑆 𝑒 ∶ 𝜎1 ⊕ 𝜎2 Γ′; Δ′, 𝑥1: 𝜎1 ⊢𝑆 𝑒1: 𝜎 Γ′; Δ′, 𝑥2: 𝜎2 ⊢𝑆 𝑒2 ∶ 𝜎 𝜔𝜎 𝑒1, 𝑒2 ≡ 0

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛1 𝑥1 → 𝑒1 𝑖𝑛2 𝑥2 → 𝑒2 : 𝜎

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

case 𝑒 of {𝑖𝑛x → 𝑒x ∣ 𝑖𝑛z → 𝑒z} Pauli case analysis

* case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

𝜔𝜎(𝑒1, 𝑒2) Symplectic form

Intel ConfidentialDepartment or Event Name 34Programming Cliffords with Symplectic TypesFoQaCiA 2024 34

2. Theorem

If Γ; 𝑧: 𝜎 ⊢𝑆 𝑒 ∶ 𝜎′

then, for all 𝑣1, 𝑣2: 𝜎,

𝜔 𝑒{𝑧 ↦ 𝑣1 , 𝑒{𝑧 ↦ 𝑣2}) ≡ 𝜔(𝑣1, 𝑣2)

Intel ConfidentialDepartment or Event Name 35Programming Cliffords with Symplectic TypesFoQaCiA 2024 35

Path towards a type system

1. Type system for free modules over a ring, with biproducts

2. Type system for symplectic morphisms—linear
transformations that respect the symplectic form

3. Type system for Paulis 𝒓 𝒗

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′

≅
Pairs of functions 𝜇, 𝜓 where
• 𝜇: 𝑉 → ℤ𝑑 is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.

Intel ConfidentialDepartment or Event Name 36Programming Cliffords with Symplectic TypesFoQaCiA 2024 36

3. Type system for Pauli algebra

Functions: (𝛿, 𝜙) where
• 𝛿: 𝜎 → 𝑅 is a linear transformation;
• 𝜙: 𝜎 → 𝜎′ is a symplectic morphism

Pauli types 𝚻 Values

Phase(𝜎) Pairs ⟨𝑟⟩𝑣 for 𝑟 ∈ 𝑅, 𝑣 ∶ 𝜎

Intel ConfidentialDepartment or Event Name 37Programming Cliffords with Symplectic TypesFoQaCiA 2024 37

3. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

𝜔(𝑒1, 𝑒2) Symplectic form

case 𝑒 of {𝑖𝑛x → 𝑒x ∣ 𝑖𝑛z → 𝑒z} Pauli case analysis

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

* 𝑒 𝑒′ ∣ e1 × 𝑒2 Pauli operations

Intel ConfidentialDepartment or Event Name 38Programming Cliffords with Symplectic TypesFoQaCiA 2024 38

3. Type system for Pauli algebra

𝑒 ∶ 𝜎 ⊸ Phase 𝜎

𝑒 ∶ 𝜎 → 𝑅 ⊕ 𝜎

such that
𝜇 = 𝑒 ∘ first ∶ 𝜎 → 𝑅

𝜓 = 𝑒 ∘ second ∶ 𝜎 → 𝜎
satisfy
• 𝜇: 𝜎 → 𝑅 is a linear transformation;
• 𝜓: 𝜎 → 𝜎 is a symplectomorphism.

Intel ConfidentialDepartment or Event Name 39Programming Cliffords with Symplectic TypesFoQaCiA 2024 39

…so what?

• Functions over Paulis as a programming abstraction
• Data structures, recursion, polymorphism

• Interactive feedback on what makes a Clifford

• Quantum algorithms in terms of change-of-basis

• Alternate bases other than inX/inZ

• Beyond Cliffords
• The Clifford hierarchy as functions on Paulis?

• Pauli matrices as a basis for Hilbert spaces?

Intel ConfidentialDepartment or Event Name 40Programming Cliffords with Symplectic TypesFoQaCiA 2024 40

Conclusion

• Programming Cliffords as functions over Paulis:
• Clever encodings and typing rules isolate the functions corresponding to

Cliffords

• Operational and denotational semantics show it is sound

• Need examples and implementations to show if it is useful

• Type systems can harness mathematical structures into
programming abstractions

Foundations of Quantum Computational Advantage

May 1, 2024

Programming Clifford Unitaries
with Symplectic Types
Jennifer Paykin (Intel Labs)

jennifer.paykin@intel.com

with Sam Winnick (University of Waterloo)

Intel ConfidentialDepartment or Event Name 42Intel ConfidentialDepartment or Event Name 42

Bonus Slides

Intel ConfidentialDepartment or Event Name 43Programming Cliffords with Symplectic TypesFoQaCiA 2024 43

Beyond Cliffords

Approach #1: Paulis form a basis for all square complex matrices.

𝑅𝑜𝑡 𝑃, 𝜃 : ℂ 𝑸

= cos
𝜃

2
𝐼 + 𝑖 sin

𝜃

2
𝑃

𝑀𝑒𝑎𝑠𝑍 ∶ 𝑸 ⊸ ℂ 𝑸

= 𝑄 ↦
1

4
𝐼 + 𝑍 𝑄 𝐼 + 𝑍 +

1

4
𝐼 − 𝑍 𝑄 𝐼 − 𝑍

What properties characterize unitaries, channels, etc?

How would we compile these to circuits?

Intel ConfidentialDepartment or Event Name 44Programming Cliffords with Symplectic TypesFoQaCiA 2024 44

Beyond Cliffords: the Clifford Hierarchy

𝒞1 = 𝑃𝑎𝑢𝑙𝑖 𝑔𝑟𝑜𝑢𝑝

𝒞𝑘+1 = 𝑈 ∀𝑃 ∈ 𝒞1, 𝑈𝑃𝑈† ∈ 𝒞𝑘}

Intuitively: the (𝑘 + 1)-th level of the Clifford hierarchy ~
symplectic function from Paulis to 𝑘-th level?

𝒞1 = 𝑸𝑛

𝒞𝑘+1 = 𝑸𝑛 ⊸ 𝒞𝑘+1

Intel ConfidentialDepartment or Event Name 45Programming Cliffords with Symplectic TypesFoQaCiA 2024 45

Beyond Cliffords: the Clifford Hierarchy

𝒞1 = 𝑸𝑛

𝒞𝑘+1 = 𝑸𝑛 ⊸ 𝒞𝑘+1

// t : 𝒞3 = Pauli ⊸ Pauli ⊸ Pauli

t (P : Pauli) (Q : Pauli) : Pauli =

case P of

inX -> case Q of

 inX -> <0>[1,1]

 inZ -> <1>inZ

inZ -> not Q

Intel ConfidentialDepartment or Event Name 46Programming Cliffords with Symplectic TypesFoQaCiA 2024 46

Beyond Cliffords: the Clifford Hierarchy

Challenges:

• 𝒞𝑘 is not, in general, a group. Not even closed under composition.

• The entire Clifford hierarchy ≠ all unitaries

• How does the Clifford hierarchy interact with the Pauli algebra
encoding?

Intel ConfidentialDepartment or Event Name 47Programming Cliffords with Symplectic TypesFoQaCiA 2024 47

Example: lift Paulis to Cliffords

pauli_to_clifford (P : Q) : (Q -> Phase Q) =

 fun Q =>

 <omega(P,Q)> Q.
𝑃𝑄𝑃† = (−1)𝜔(𝑃,𝑄) 𝑄

Intel ConfidentialDepartment or Event Name 48Programming Cliffords with Symplectic TypesFoQaCiA 2024 48

Compilation to circuits

⊢𝑇 𝑓 ∶ 𝑄 ⊕ ⋯ ⊕ 𝑄 ⊸ 𝑄 ⊕ ⋯ ⊕ 𝑄

𝑛 𝑛

Expressions

𝑓(𝑖𝑛0 𝑖𝑛𝑍) 𝑓(𝑖𝑛0 𝑖𝑛𝑋)
⋮ ⋮

𝑓(𝑖𝑛𝑛−1 𝑖𝑛𝑍) 𝑓(𝑖𝑛𝑛−1 𝑖𝑛𝑍)

Pauli frames/tableaus

Circuits

S

Paykin, Schmitz, et al. PCOAST: A Pauli-based quantum
circuit optimization framework. QCE 2023.

PCOAST

	Slide 1: Programming Clifford Unitaries with Symplectic Types
	Slide 2: Quantum Programming Languages
	Slide 3: Cliffords as automorphisms on the Pauli group
	Slide 4: Main Idea
	Slide 5: Example
	Slide 6: Example
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Desiderata
	Slide 12: Desiderata
	Slide 13: Desiderata
	Slide 14: Overview
	Slide 15: Background: the Pauli group
	Slide 16: Background: the Pauli algebra
	Slide 17: Background: generalizing the Pauli algebra
	Slide 18: Background: generalizing the Pauli algebra
	Slide 19: Theorem
	Slide 20: Theorem
	Slide 21: Desiderata
	Slide 22: Path towards a type system
	Slide 23: Defining a type system
	Slide 24: 1. Expressions
	Slide 25: 1. Semantics
	Slide 26: Path towards a type system
	Slide 27: 2. Type system for symplectic morphisms
	Slide 28: 2. Symplectic type system
	Slide 29: 2. Expressions
	Slide 30: 2. Expressions
	Slide 31: 2. Expressions
	Slide 32: 2. Expressions
	Slide 33: 2. Expressions
	Slide 34: 2. Theorem
	Slide 35: Path towards a type system
	Slide 36: 3. Type system for Pauli algebra
	Slide 37: 3. Expressions
	Slide 38: 3. Type system for Pauli algebra
	Slide 39: …so what?
	Slide 40: Conclusion
	Slide 41: Programming Clifford Unitaries with Symplectic Types
	Slide 42: Bonus Slides
	Slide 43: Beyond Cliffords
	Slide 44: Beyond Cliffords: the Clifford Hierarchy
	Slide 45: Beyond Cliffords: the Clifford Hierarchy
	Slide 46: Beyond Cliffords: the Clifford Hierarchy
	Slide 47: Example: lift Paulis to Cliffords
	Slide 48: Compilation to circuits

