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Quantum Programming Languages

Gate-based programming:
• Qiskit, Circ, Q#, tket, Intel Quantum SDK

Beyond gate-based programming:
• Identify mathematical abstractions

• Build a language that harnesses those abstractions

• Express algorithms naturally and enable new ideas
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Cliffords as automorphisms on the Pauli group

Unitary matrices generated by 
𝑋, 𝑌, 𝑍, 𝐻, 𝑆, 𝐶𝑁𝑂𝑇

Projective Clifford group:

Automorphisms on the Pauli group
𝑃 ↦ 𝑃′

that fix the center

Unitary matrices 𝑈 satisfying

∀𝑃 ∈ 𝒫𝑛,
𝑈𝑃𝑈† ∈ 𝒫𝑛

Pauli group (𝒫)

𝑋 × 𝑋 = 𝐼
 𝑋 × 𝑌 = 𝑖𝑍

 𝑋 × 𝑍 = −𝑖𝑌
𝑋 × 𝐼 = 𝑋
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Main Idea

Clifford unitaries

expressed as functions
on qudit Pauli operators

that satisfy certain properties
(center-fixing automorphism)
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Example
Idea: 

Clifford unitaries
expressed as functions

on Pauli operators
that satisfy certain properties

H

h (P : PauliType) : Phase PauliType =

case P of

inX -> ?

 inZ -> ?

PauliType
=

type of single-qubit Pauli encodings 

case ? of …
=

break up the input into basis elements

inX/inZ
=

syntax referring to 𝑋/𝑍 Paulis

𝐻𝑋𝐻 = (−1)0𝑍
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Example
Idea: 

Clifford unitaries
expressed as functions

on Pauli operators
that satisfy certain properties

h (P : PauliType) : Phase PauliType =

case P of

inX -> 

 inZ -> ?

H

𝐻𝑋𝐻 = −1 0𝑍<0> inZ
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Example
Idea: 

Clifford unitaries
expressed as functions

on Pauli operators
that satisfy certain properties

h (P : PauliType) : Phase PauliType =

case P of

inX -> <0> inZ

 inZ ->

H

<0> inX 𝐻𝑍𝐻 = −1 0𝑋
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Example

cnot (P : PauliType ⊕ PauliType) : Phase (PauliType ⊕ PauliType) =

  case P of

    in1 Q -> case Q of

          inX ->

          inZ ->

    in2 Q -> case Q of 

          inX ->

          inZ ->

𝐶𝑁𝑂𝑇 𝑍 ⊗ 𝐼  𝐶𝑁𝑂𝑇 = 𝑍 ⊗ 𝐼<0>(in1 inZ)
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cnot (P : PauliType ⊕ PauliType) : Phase (PauliType ⊕ PauliType) =

  case P of

    in1 Q -> case Q of

          inX ->

          inZ -> <0>(in1 inZ)

    in2 Q -> case Q of 

          inX ->

          inZ ->

Example

𝐶𝑁𝑂𝑇 𝑋 ⊗ 𝐼 𝐶𝑁𝑂𝑇 = X ⊗ 𝑋<0>(in1 inX) * <0>(in2 inX)
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Example

cnot (P : PauliType ⊕ PauliType) : Phase (PauliType ⊕ PauliType) =

  case P of

    in1 Q -> case Q of

          inX -> <0>(in1 inX) * <0>(in2 inX)

          inZ -> <0>(in1 inZ)

    in2 Q -> case Q of 

          inX -> <0>(in2 inX)

          inZ -> <0>(in1 inZ) * <0>(in2 inZ)
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Desiderata

1. Functions implement Cliffords: 

 center-fixing automorphisms on the Pauli group

 Type system for ensuring functions are indeed automorphisms.

notClifford (P : PauliType) : Phase PauliType =

case P of

inX -> <0> inX

inZ -> <0> inX

Type-checking 
Error:

The inX and inZ 
branches of the 
case statement 

should 
anticommute.
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Desiderata

2. All Cliffords can be represented
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Desiderata

3. (Qubit) Clifford functions can be compiled to circuits

h (P : PauliType) : Phase PauliType =

case P of

inX -> <0>inZ

inZ -> <0>inX

Pauli Tableau/Frame
𝑋 𝑍

H

Paykin, Schmitz, et al. PCOAST: A Pauli-based quantum circuit optimization framework. QCE 2023.

PCOAST

Aaronson and Gottesman, “Improved simulation of stabilizer circuits,” 2004.
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Overview

1. Background on encodings of the Pauli group

2. Projective Cliffords as symplectic functions over Pauli 
encodings

3. Type system for symplectic functions
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Background: the Pauli group

Single-qubit Paulis (𝑝)

𝑋 =
0 1
1 0

           Y =
0 −𝑖
𝑖 0

𝑍 =
1 0
0 −1

         I =
1 0
0 1

Pauli group (𝒫)

𝑋 × 𝑋 = 𝐼
 𝑋 × 𝑌 = 𝑖𝑍

 𝑋 × 𝑍 = −𝑖𝑌
𝑋 × 𝐼 = 𝑋

⋯

Symplectic Form
𝜔: 𝒫 ⊗ 𝒫 → ℤ2

encodes commutativity of Paulis
 𝑃1 × 𝑃2 = (−1)𝜔(𝑃1,𝑃2)𝑃2 × 𝑃1

𝜔 𝑋, 𝑌 = 𝜔 𝑌, 𝑍 = 𝜔 𝑍, 𝑋 = 1
𝜔 𝑃, 𝑃 = 0
𝜔 𝐼, 𝑃 = 0

Any two Paulis either commute or 
anti-commute
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Background: the Pauli algebra

Every member of the Pauli group can 
be written as

𝑖𝑟Δ[𝑥,𝑧]

where 𝑟 ∈ ℤ4 and 𝑥, 𝑧 ∈ ℤ2 and
Δ 𝑥,𝑧 = 𝑖𝑥𝑧𝑋𝑥𝑍𝑧

Let’s write this 𝑟 𝑥, 𝑧 .

Example:

“Y” = 0 [1,1]

since 𝑌 = 𝑖𝑋𝑍 = 𝑖0𝑖1𝑋1𝑍1.

Symplectic form

𝜔 𝑟1 𝑥1, 𝑧1 , ⟨𝑟2⟩ 𝑥2, 𝑧2 = 𝑥1𝑧2 − 𝑧1𝑥2

Example:

𝜔("X", "Y") =𝜔 ⟨0⟩ 1,0 , ⟨0⟩ 1,1
= 1 ∗ 1 − 0 ∗ 1 = 1
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Background: generalizing the Pauli algebra

Generalize to 𝑛-qubit Paulis 𝒫𝑛

𝑝0 ⊗ ⋯ ⊗ 𝑝𝑛−1

Algebra:
𝑟 Ԧ𝑥, Ԧ𝑧

= 𝑖𝑟Δ[𝑥0,𝑧0] ⊗ ⋯ ⊗ Δ 𝑥𝑛−1,𝑧𝑛−1

= 𝑖𝑟𝑖 Ԧ𝑥⋅ Ԧ𝑧(𝑋𝑥0 ⊗ ⋯ ⊗ 𝑋𝑥𝑛−1)(𝑍𝑧0 ⊗ ⋯ ⊗ 𝑍𝑧𝑛−1)

where 𝑟 ∈ ℤ4, 
Ԧ𝑥 = 𝑥0, … , 𝑥𝑛−1 ∈ ℤ2

𝑛

Ԧ𝑧 = [𝑧0, … , 𝑧𝑛−1]  ∈ ℤ2
𝑛

𝑉 = vectors in the Pauli algebra 
encoding over ℤ2

 aka 𝑉 = ℤ2
𝑛 ⊕ ℤ2

𝑛

Symplectic Form
𝜔: 𝑉 ⊗ 𝑉 → ℤ2

𝜔 𝑥1, 𝑧1 , 𝑥2, 𝑧2 = 𝑥1 ⋅ 𝑧2 − 𝑧1 ⋅ 𝑥2
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Background: generalizing the Pauli algebra

Generalize to 𝑛-qu𝒅it Paulis 𝑃𝑑,𝑛

𝑋 𝑟 = | 𝑟 + 1) mod 𝑑  
𝑍 𝑟 = 𝜁𝑟|𝑟⟩                      where 𝜁𝑑 = 1.

Algebra:
𝑟 Ԧ𝑥, Ԧ𝑧

=𝜁𝑟Δ[ Ԧ𝑥, Ԧ𝑧] =  𝜁𝑟𝜁
1

2
Ԧ𝑥⋅ Ԧ𝑧𝑋 Ԧ𝑥𝑍 Ԧ𝑥

where     

𝑟 ∈ ½ ℤ𝑑′

d′= ቊ
𝑑 𝑑 odd

2𝑑 𝑑 even
 

Ԧ𝑥 = 𝑥0, … , 𝑥𝑛−1 ∈ ℤ𝑑
𝑛

Ԧ𝑧 = [𝑧0, … , 𝑧𝑛−1] ∈ ℤ𝑑
𝑛

 

 

𝑉 = vectors in the Pauli algebra 
encoding over ℤ𝑑

 aka 𝑉 = ℤ𝑑
𝑛 ⊕ ℤ𝑑

𝑛

Symplectic Form
𝜔: 𝑉 ⊗ 𝑉 → ℤ𝑑

𝜔 𝑥1, 𝑧1 , 𝑥2, 𝑧2 = 𝑥1 ⋅ 𝑧2 − 𝑧1 ⋅ 𝑥2
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Theorem

The set of projective Cliffords 𝑃𝐶𝑙𝑑′/𝑑
′  

≅
The set of pairs of functions 𝛿, 𝜙  where 

• 𝛿: 𝑉′ →
1

2
ℤ𝑑′ is a linear transformation;

• 𝜙: 𝑉′ → 𝑉′ is a symplectomorphism---a linear isomorphism that respects the 
symplectic form; and

• the function Δ𝑣 ↦ 𝜁𝛿(𝑣)Δ𝜙(𝑣) is right-definite.

𝑉′ = vectors in the Pauli algebra encoding
 vector space over 𝑅′ = ℤ𝑑′
1

2
ℤ𝑑′ = coefficients of 𝜁 in the Pauli algebra encoding

              where 𝜁1/2 is a 𝑑′-th root of unity

Δ𝑣 ↦ 𝜁𝛿(𝑣)Δ𝜙(𝑣)
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Theorem

The set of projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′  

≅
Functions over the Pauli algebra where
• 𝜇: 𝑉 → ℤ𝑑  is an 𝑅-linear map; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism---a linear isomorphism satisfying

𝜔 𝜓 𝑃1 , 𝜓 𝑃2 = 𝜔(𝑃1, 𝑃2)

Proof sketch:

Projective Clifford → Encoding (𝛿, 𝜙) over V′

     → Compact encoding (𝜇, 𝜓) over 𝑉
                                              → Encoding (𝛿, 𝜙) over 𝑉′
     → Projective Clifford

𝑉 = vectors in the Pauli algebra 
encoding over ℤ𝑑

 aka 𝑉 = ℤ𝑑
𝑛 ⊕ ℤ𝑑

𝑛
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Desiderata

1. Functions implement Cliffords: automorphisms on the Pauli 
group
• Type system for ensuring functions are automorphisms

1a. Functions implement (𝜇, 𝜓)
• Type system for ensuring properties are respected

2. All Cliffords can be represented

2a. All such functions can be represented

3. All functions can be compiled to circuits

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′  

≅
Pairs of functions 𝜇, 𝜓  where 
• 𝜇: 𝑉 → ℤ𝑑  is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.
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Path towards a type system

1. Type system for free modules over a ring, with biproducts

2. Type system for symplectic morphisms—linear 
transformations that respect the symplectic form

3. Type system for Paulis 𝑟 𝑣

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′  

≅
Pairs of functions 𝜇, 𝜓  where 
• 𝜇: 𝑉 → ℤ𝑑  is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.



Intel ConfidentialDepartment or Event Name 23Programming Cliffords with Symplectic TypesFoQaCiA 2024 23

Defining a type system

1. What are types?

2. What are values of a given 
type?

3. What properties should 
well-typed expressions 
satisfy?

4. What are the typing rules 
for well-typed expressions?

Module Types  𝝉

𝑅

𝜏1 ⊕ 𝜏2

Types: free finitely-generated  𝑅-modules

Module Types  𝝉 Values

𝑅 Constants 𝑟 ∈ 𝑅

𝜏1 ⊕ 𝜏2 Tuples [𝑣1, 𝑣2]

Values: vectors in the 𝑅-module

Expressions: linear transformations

𝑥: 𝜏 ⊢ 𝑒 ∶ 𝜏′
𝑒[𝑐1 ⋅ 𝑣1 + 𝑐2 ⋅ 𝑣2]

≡
𝑐1 ⋅ 𝑒 𝑣1 + 𝑐2 ⋅ 𝑒 𝑣2
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1. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

Γ ⊢ 𝑒 ∶ 𝜏′
Γ ≔ 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

𝜏 ≔ 𝑅 ∣ 𝜏1 ⊕ 𝜏2

Arrighi & Dowek. Lineal: A linear-algebraic lambda-calculus. LMCS 2017.
Díaz-Caro & Dowek. A new connective in natural deduction, and its application to quantum computing. TCS 2023.
Díaz-Caro & Dowek. A linear linear lambda-calculus. MSCS 2024.

relevant type system:
• contraction: variables can be duplicated
• no weakening: variables cannot be discarded
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1. Semantics

𝑥: 𝜏 ⊢ 𝑒 ∶ 𝜏′

𝒞: category of 
𝑅-modules

𝑥: 𝜏 ⊢ 𝑒′: 𝜏′

categorical 
semantics

operational 
semantics

𝜏 𝜏′

𝑒

𝑒′

𝑥: 𝜏 ⊢ 𝑒 ≡ 𝑒′: 𝜏′equivalence 
relation
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Path towards a type system

1. Type system for free modules over a ring, with biproducts

2. Type system for symplectic morphisms—linear 
transformations that respect the symplectic form

3. Type system for Paulis 𝑟 𝑣

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′  

≅
Pairs of functions 𝜇, 𝜓  where 
• 𝜇: 𝑉 → ℤ𝑑  is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.
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2. Type system for symplectic morphisms

Symplectic Types  𝝈 Values

𝑸 = 𝑅 ⊕ 𝑅 Single-qudit vector [𝑥, 𝑧] 
encoding 𝛥[𝑥,𝑧]

𝜎1 ⊕ 𝜎2 Tuples [𝑣1, 𝑣2]

Types: free finitely-generated 𝑅-modules for 
which symplectic form is defined

Values: vectors in the 𝑅-module

Expressions: linear transformations 
that respect symplectic form

𝑥: 𝜎 ⊢𝑆 𝑒 ∶ 𝜎′

𝜔(𝑒 𝑣1 , 𝑒[𝑣2])
≡

𝜔(𝑣1, 𝑣2)
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2. Symplectic type system

a1: 𝜏1, … , 𝑎𝑛: 𝜏𝑛 ; b: 𝜎 ⊢𝑆 𝑒 ∶ 𝜎

Respect symplectic formLinear transformation

Symplectic 
types 𝝈

Vector spaces used 
in the Pauli algebra 
(dimension 𝟐𝒏)

𝑸 =
𝑅 ⊕ 𝑅

Single-qudit vector 
[𝑥, 𝑧] encoding 𝛥[𝑥,𝑧]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit 
vectors

Module 
Types  𝝉

Values

𝑅 Constants 𝑟 ∈ 𝑅

𝜏1 ⊕ 𝜏2 Tuples [𝑣1, 𝑣2]



Intel ConfidentialDepartment or Event Name 29Programming Cliffords with Symplectic TypesFoQaCiA 2024 29

2. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

* 𝜔𝜎(𝑒1, 𝑒2) Symplectic form

Γ1 ⊢ 𝑒1: 𝜎 Γ2 ⊢ 𝑒2: 𝜎

Γ1 ∪ Γ2 ⊢ 𝜔𝜎 𝑒1, 𝑒2 ∶ 𝑅

𝜔𝑸 𝑟1, 𝑟1
′ , 𝑟2, 𝑟2

′ → 𝑟1𝑟2
′ − 𝑟1

′𝑟2

𝜔𝜎1⊕𝜎2
𝑣1, 𝑣1

′ , 𝑣2, 𝑣2
′ → 𝜔𝜎1

𝑣1, 𝑣2 + 𝜔𝜎2
(𝑣1

′ , 𝑣2
′ )

Symplectic 
types 𝝈

Vector spaces used in 
the Pauli algebra 
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x] 
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors
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2. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

* case 𝑒 of {𝑖𝑛x → 𝑒x ∣ 𝑖𝑛z → 𝑒z} Pauli case analysis

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

𝜔𝜎(𝑒1, 𝑒2) Symplectic form

Symplectic 
types 𝝈

Vector spaces used in 
the Pauli algebra 
(dimension 𝟐𝒏)

𝑸 =
𝑅 ⊕ 𝑅

Single-qudit vector [z,x] 
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors

Γ; Δ ⊢𝑆 𝑒 ∶ 𝑸 Γ′; Δ′  ⊢𝑆 𝑒𝑥: 𝜎 Γ′; Δ′ ⊢𝑆 𝑒𝑧: 𝜎 𝜔𝜎 𝑒𝑥 , 𝑒𝑧 ≡ 1 

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛𝑋 → 𝑒x 𝑖𝑛Z → 𝑒z : 𝜎

𝑖𝑛𝑧 = 1,0
𝑖𝑛𝑥 = [0,1]
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2. Expressions

Γ; Δ ⊢𝑆 𝑒 ∶ 𝑸 Γ′; Δ′  ⊢𝑆 𝑒𝑥: 𝜎 Γ′; Δ′ ⊢𝑆 𝑒𝑧: 𝜎 𝜔𝜎 𝑒𝑥 , 𝑒𝑧 ≡ 1 

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛𝑋 → 𝑒x 𝑖𝑛Z → 𝑒z : 𝜎

h (P : QType) : QType =

case P of

inX -> inZ

inZ -> inX

𝜔 𝑖𝑛𝑍, 𝑖𝑛𝑋 = 𝜔 0,1 , 1,0 = 0 − 1 = 1 (𝑚𝑜𝑑 2)

Symplectic 
types 𝝈

Vector spaces used in 
the Pauli algebra 
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x] 
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors
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2. Expressions

𝜔 𝑖𝑛𝑍, 𝑖𝑛𝑍 = 𝜔 0,1 , 0,1 = 0 − 0 ≠ 1

notSymplectic(x : QType) : QType  =

case x of

inX -> inZ

 inZ -> inZ

Γ; Δ ⊢𝑆 𝑒 ∶ 𝑸 Γ′; Δ′  ⊢𝑆 𝑒𝑥: 𝜎 Γ′; Δ′ ⊢𝑆 𝑒𝑧: 𝜎 𝜔𝜎 𝑒𝑥 , 𝑒𝑧 ≡ 1 

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛𝑋 → 𝑒x 𝑖𝑛Z → 𝑒z : 𝜎

Symplectic 
types 𝝈

Vector spaces used in 
the Pauli algebra 
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x] 
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors
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2. Expressions

Symplectic 
types 𝝈

Vector spaces used in 
the Pauli algebra 
(dimension 𝟐𝒏)

𝑸 =
R ⊕ R

Single-qudit vector [z,x] 
encoding Δ[𝑧,𝑥]

𝜎1 ⊕ 𝜎2 Tuple of n-qudit vectors

Γ; Δ ⊢𝑆 𝑒 ∶ 𝜎1 ⊕ 𝜎2 Γ′; Δ′, 𝑥1: 𝜎1 ⊢𝑆 𝑒1: 𝜎 Γ′; Δ′, 𝑥2: 𝜎2 ⊢𝑆 𝑒2 ∶ 𝜎 𝜔𝜎 𝑒1, 𝑒2 ≡ 0 

Γ ∪ Γ′; Δ, Δ′ ⊢𝑆 case 𝑒 of 𝑖𝑛1 𝑥1 → 𝑒1 𝑖𝑛2 𝑥2 → 𝑒2 : 𝜎

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

case 𝑒 of {𝑖𝑛x → 𝑒x ∣ 𝑖𝑛z → 𝑒z} Pauli case analysis

* case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

𝜔𝜎(𝑒1, 𝑒2) Symplectic form
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2. Theorem

If Γ; 𝑧: 𝜎 ⊢𝑆 𝑒 ∶ 𝜎′

then, for all 𝑣1, 𝑣2: 𝜎,

𝜔 𝑒{𝑧 ↦ 𝑣1 , 𝑒{𝑧 ↦ 𝑣2}) ≡ 𝜔(𝑣1, 𝑣2)
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Path towards a type system

1. Type system for free modules over a ring, with biproducts

2. Type system for symplectic morphisms—linear 
transformations that respect the symplectic form

3. Type system for Paulis 𝒓 𝒗

Projective Cliffords 𝑃𝐶𝑙𝑑,𝑛
′  

≅
Pairs of functions 𝜇, 𝜓  where 
• 𝜇: 𝑉 → ℤ𝑑  is a linear transformation; and
• 𝜓: 𝑉 → 𝑉 is a symplectomorphism.
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3. Type system for Pauli algebra

Functions: (𝛿, 𝜙) where
• 𝛿: 𝜎 → 𝑅 is a linear transformation;
• 𝜙: 𝜎 → 𝜎′ is a symplectic morphism

Pauli types 𝚻 Values

Phase(𝜎) Pairs ⟨𝑟⟩𝑣 for 𝑟 ∈ 𝑅, 𝑣 ∶ 𝜎
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3. Expressions

𝑒 ≔ 𝑥 ∣ 𝑟 ∣ [e1, e2] Variables, scalars, and vectors

𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 Operations on scalars and vectors

𝜔(𝑒1, 𝑒2) Symplectic form

case 𝑒 of {𝑖𝑛x → 𝑒x ∣ 𝑖𝑛z → 𝑒z} Pauli case analysis

case 𝑒 of {𝑖𝑛1(𝑥1) → 𝑒1 ∣ 𝑖𝑛2(𝑥2) → 𝑒2} Vector case analysis

* 𝑒 𝑒′ ∣ e1 × 𝑒2 Pauli operations
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3. Type system for Pauli algebra

𝑒 ∶ 𝜎 ⊸ Phase 𝜎

𝑒 ∶ 𝜎 → 𝑅 ⊕ 𝜎

such that
𝜇 = 𝑒 ∘ first ∶ 𝜎 → 𝑅

𝜓 = 𝑒 ∘ second ∶ 𝜎 → 𝜎
satisfy
• 𝜇: 𝜎 → 𝑅 is a linear transformation;
• 𝜓: 𝜎 → 𝜎 is a symplectomorphism.
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…so what?

• Functions over Paulis as a programming abstraction
• Data structures, recursion, polymorphism

• Interactive feedback on what makes a Clifford

• Quantum algorithms in terms of change-of-basis

• Alternate bases other than inX/inZ

• Beyond Cliffords
• The Clifford hierarchy as functions on Paulis?

• Pauli matrices as a basis for Hilbert spaces?



Intel ConfidentialDepartment or Event Name 40Programming Cliffords with Symplectic TypesFoQaCiA 2024 40

Conclusion

• Programming Cliffords as functions over Paulis:
• Clever encodings and typing rules isolate the functions corresponding to 

Cliffords

• Operational and denotational semantics show it is sound

• Need examples and implementations to show if it is useful

• Type systems can harness mathematical structures into 
programming abstractions
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Beyond Cliffords

Approach #1: Paulis form a basis for all square complex matrices.

𝑅𝑜𝑡 𝑃, 𝜃 : ℂ 𝑸  

= cos
𝜃

2
𝐼 + 𝑖 sin

𝜃

2
𝑃

𝑀𝑒𝑎𝑠𝑍 ∶ 𝑸 ⊸ ℂ 𝑸

= 𝑄 ↦
1

4
𝐼 + 𝑍 𝑄 𝐼 + 𝑍 +

1

4
𝐼 − 𝑍 𝑄 𝐼 − 𝑍

What properties characterize unitaries, channels, etc?

How would we compile these to circuits?
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Beyond Cliffords: the Clifford Hierarchy

𝒞1 = 𝑃𝑎𝑢𝑙𝑖 𝑔𝑟𝑜𝑢𝑝

𝒞𝑘+1 = 𝑈 ∀𝑃 ∈ 𝒞1, 𝑈𝑃𝑈† ∈ 𝒞𝑘} 

Intuitively: the (𝑘 + 1)-th level of the Clifford hierarchy ~ 
symplectic function from Paulis to 𝑘-th level?

𝒞1 = 𝑸𝑛

𝒞𝑘+1 = 𝑸𝑛 ⊸ 𝒞𝑘+1
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Beyond Cliffords: the Clifford Hierarchy

𝒞1 = 𝑸𝑛

𝒞𝑘+1 = 𝑸𝑛 ⊸ 𝒞𝑘+1

// t : 𝒞3 = Pauli ⊸ Pauli ⊸ Pauli

t (P : Pauli) (Q : Pauli) : Pauli =

case P of

inX -> case Q of

      inX -> <0>[1,1]

      inZ -> <1>inZ

inZ -> not Q
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Beyond Cliffords: the Clifford Hierarchy

Challenges: 

• 𝒞𝑘  is not, in general, a group. Not even closed under composition.

• The entire Clifford hierarchy ≠ all unitaries

• How does the Clifford hierarchy interact with the Pauli algebra 
encoding?
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Example: lift Paulis to Cliffords

pauli_to_clifford (P : Q) : (Q -> Phase Q) =

  fun Q => 

      <omega(P,Q)> Q.
𝑃𝑄𝑃† = (−1)𝜔(𝑃,𝑄) 𝑄
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Compilation to circuits

⊢𝑇 𝑓 ∶  𝑄 ⊕ ⋯ ⊕ 𝑄 ⊸ 𝑄 ⊕ ⋯ ⊕ 𝑄

𝑛 𝑛

Expressions

𝑓(𝑖𝑛0 𝑖𝑛𝑍 ) 𝑓(𝑖𝑛0 𝑖𝑛𝑋 )
⋮ ⋮

𝑓(𝑖𝑛𝑛−1 𝑖𝑛𝑍 ) 𝑓(𝑖𝑛𝑛−1 𝑖𝑛𝑍 )

Pauli frames/tableaus

Circuits

S

Paykin, Schmitz, et al. PCOAST: A Pauli-based quantum 
circuit optimization framework. QCE 2023.

PCOAST
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