
Jennifer Paykin, Eric Mertens, Mark Tullsen,
Luke Maurer, Benoît Razet, and Scott Moore

Exploits as
Insecure Compilation

PriSC, January 25 2020

A compiler is secure if it doesn't
introduce exploits.

A compiler is secure if it doesn't
introduce exploits.

A compiler is insecure if it
introduces exploits.

A compiler is secure if it doesn't
introduce exploits.

A compiler is insecure if it
introduces exploits.

how insecure is it?

A compiler is secure if it doesn't
introduce exploits.

A compiler is insecure if it
introduces exploits.

how insecure is it?

with respect to a particular program?

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Definition (Weird Machines)

The computational model made accessible by hacking a
particular program.

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Idealized, “correct” state machine specification

that preserves security properties

Concrete “implementation” model that admits
additional behaviors

(Vanegue 2014, Dullien 2017, Bratus & Shubina 2017)

1

2

Definition (Weird Machines)

The computational model made accessible by hacking a
particular program.

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Insecure Compiler

program in high-level source language

for which security properties are enforced

implementation in low-level target language

that admits additional behaviors

1

2

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Secure compilation

Weird machines

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Exploits as violations
of secure compilation

Source language

Target language

DefinitionDefinition

An exploit
of a source component V
An exploit
of a source component V

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V
An exploit
of a source component V

is a context A

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

A

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V
An exploit
of a source component V

is a context A
from attack class A

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

A

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V
An exploit
of a source component V

is a context A
from attack class A
such that
the behavior of A[V⟦ ⟧]

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

A

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V
An exploit
of a source component V

is a context A
from attack class A
such that
the behavior of A[V⟦ ⟧]
cannot be simulated by V
in the source language.

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Secure compilation

Weird machines

Hypothesis:
Definitions match intuitions

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Exploit type return-oriented
programming (ROP)

Source C

Compiler clang

Target assembly

Component complete C program

Context command-line input

Attack class command-line input

Behavior output traces

A

A

Source language

Target language

Framework

C

context

program
component

compiler

attack class

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Exploit type return-oriented
programming (ROP)

Source C

Compiler clang

Target assembly

Component complete C program

Context command-line input

Attack class command-line input

Behavior output traces

Spectre
(Patrignani and Guarnieri 2020)

non-speculative semantics

no-op

speculative semantics

program in memory

memory, cache, PC, etc...

prepare cache, invoke
function, query cache...

timing information

A

A

Source language

Target language

Framework

C

context

program
component

compiler

attack class

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

A

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V
An exploit
of a source component V

is a context A
from attack class A
such that
the behavior of A[V⟦ ⟧]
cannot be simulated by V
in the source language.

V

-

⟦V⟧

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Secure compilation

Weird machines

Constructive procedure to answer:
Is A an exploit of V?

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation
Definition (Abate et al 2019)

A compiler satisfies robust hyper-property preservation (RHP)
if, source programs ∀ source programs V and hyper-properties ∀ source programs H ⊆ B:

(∀ source programs CS. Behavior(CS[V]) ∈ H) ⇒
(∀ source programs CT. Behavior(CT[V⟦ ⟧]) ∈ H)

* approx: behaviors = sets of traces, so H is a set of (set of traces)

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation
Definition (Abate et al 2019)

A compiler satisfies robust hyper-property preservation (RHP)
if, source programs ∀ source programs V and hyper-properties ∀ source programs H ⊆ B:

(∀ source programs CS. Behavior(CS[V]) ∈ H) ⇒
(∀ source programs CT. Behavior(CT[V⟦ ⟧]) ∈ H)

Theorem (Abate et al 2019)

A compiler satisfies RHP iff source programs ∀ source programs V:

∀ source programs CT, ∃CS . Behavior(CS [V]) = Behavior(CT[V⟦ ⟧]).

* approx: behaviors = sets of traces, so H is a set of (set of traces)

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation

∀ source programs CT, ∃CS . Behavior(CS [V]) = Behavior(CT[V⟦ ⟧]).

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation

Definition

An exploit of a source programs V is a context A ∈ A
such that

¬ ∃ CS . Behavior(CS [V]) = Behavior(CT[V⟦ ⟧]).

∀ source programs CT, ∃CS . Behavior(CS [V]) = Behavior(CT[V⟦ ⟧]).

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation
Definition

An exploit of a source program V is a context A ∈ A
such that

∀ source programs CS . Behavior(CS [V]) ≠ Behavior(CT[V⟦ ⟧]).

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation
Definition

An exploit of a source program V is a context A ∈ A
such that

∀ source programs CS . Behavior(CS [V]) ≠ Behavior(CT[V⟦ ⟧]).

Theorem

A is an exploit of V iff RHP is violated:
 ∃ hyper-property H ⊆ B such that

(∀ source programs CS. Behavior(CS[V]) ∈ H)
but Behavior(A[V⟦ ⟧]) ∉ H)

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Secure compilation

Weird machines

different security properties
= different attack classes

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Abate et al. 2019

Hierarchy of robust property
preservation classes

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Hierarchy of exploit classes

identify a class of security properties of interest

identify property-free characterization

exploit class is negation of property-free
characterization

1

2

3
Full

abstraction?Full

abstraction?

CFI?CFI?

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Trace Property Preservation
Definition

A trace exploit of a source program V is a context A ∈ A such that

 ∃ t Behavior(∈ A[⟦V⟧]).
 ∀ source programs CS, t Behavior(∉ CS[V])

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Trace Property Preservation
Definition

A trace exploit of a source program V is a context A ∈ A such that

 ∃ t Behavior(∈ A[⟦V⟧]).
 ∀ source programs CS, t Behavior(∉ CS[V])

Theorem

 trace exploits hyperproperty exploits.⊆
 hyperproperty exploits trace exploits ⊈ trace exploits
 e.g. side-channel attacks
 Trace exploits “more programmable” than hyperproperty exploits.

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Secure compilation

Weird machines

 exploits compose
through compiler stages

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Compositionality through
compiler stages

Source language

Target language

V

Intermediate
language ⟦V⟧1

⟦⟧2

⟦⟧1

⟦⟦V⟧1⟧2

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Compositionality through
compiler stages

Source language

Target language

V

Intermediate
language ⟦V⟧1

⟦⟧2

⟦⟧1

A

Theorem

If A is an exploit of V⟦ ⟧1
such that
 ⟦⟧1 is correct for V; and
 behaviors are invertible,
then A is an exploit of V.

⟦⟦V⟧1⟧2

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Compositionality through
compiler stages

Source language

Target language

V

Intermediate
language ⟦V⟧1

⟦⟧2

⟦⟧1

A

Theorem

If A is an exploit of V⟦ ⟧1
such that
 ⟦⟧1 is correct for V; and
 behaviors are invertible,
then A is an exploit of V.

⟦⟦V⟧1⟧2

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Takeaways in the paper...

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Takeaways in the paper...

“Obvious” applications of secure compilation

 value in formalizing application strategy?1

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Takeaways in the paper...

“Obvious” applications of secure compilation

 value in formalizing application strategy?

Non-traditional “programming languages” and “compilers”

 no-op compilers with different operational semantics

 source language as state machines

1

2

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Takeaways in the paper...

“Obvious” applications of secure compilation

 value in formalizing application strategy?

Non-traditional “programming languages” and “compilers”

 no-op compilers with different operational semantics

 source language as state machines

Trace-relating compilers

 source behaviors different from target behaviors

 behaviors need not be sets of traces

1

2

3

© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Next steps...

Study counterexamples to secure compilation

 while trying to design a secure compiler

 determine programmability of exploits in design

 given an insecure compiler, help designing mitigations

Jennifer Paykin, Eric Mertens, Mark Tullsen,
Luke Maurer, Benoît Razet, and Scott Moore

Weird Machines as
Insecure Compilation

PriSC 2020

This material is based upon work supported by the United States Air Force and DARPA under Contract No.
FA8750-15-C-0124. Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United States Air Force and DARPA.

	Slide 1
	page2 (1)
	page2 (2)
	page2 (3)
	page2 (4)
	page7 (1)
	page7 (2)
	Slide 14
	Slide 15
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	Slide 33
	page18 (1)
	page18 (2)
	Slide 44
	Slide 45
	page24 (1)
	page24 (2)
	page25 (1)
	page25 (2)
	page26 (1)
	page26 (2)
	Slide 53
	Slide 54
	Slide 55
	page31 (1)
	page31 (2)
	Slide 59
	page34 (1)
	page34 (2)
	page34 (3)
	page36 (1)
	page36 (2)
	page36 (3)
	page36 (4)
	Slide 68
	Slide 70
	Slide 71

