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Definition (Weird Machines)

The computational model made accessible by hacking a 
particular program.
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Idealized, “correct” state machine specification

that preserves security properties

Concrete “implementation” model that admits 
additional behaviors

(Vanegue 2014, Dullien 2017, Bratus & Shubina 2017)
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Insecure Compiler

program in high-level source language

for which security properties are enforced 

implementation in low-level target language

that admits additional behaviors
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Secure compilation

Weird machines
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Exploits as violations
of secure compilation

Source language

Target language

DefinitionDefinition

An exploit
of a source component V 
An exploit
of a source component V 
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-

⟦V⟧



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V 
An exploit
of a source component V 

is a context A

V

-

⟦V⟧



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

A

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V 
An exploit
of a source component V 

is a context A
from attack class A 

V

-

⟦V⟧



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

A

Exploits as violations
of secure compilation

A

Source language

Target language

DefinitionDefinition

An exploit
of a source component V 
An exploit
of a source component V 

is a context A
from attack class A 
such that                      
the behavior of A[ V⟦ ⟧ ] 

V

-

⟦V⟧



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

A

Exploits as violations
of secure compilation

A

Source language
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DefinitionDefinition

An exploit
of a source component V 
An exploit
of a source component V 

is a context A
from attack class A 
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the behavior of A[ V⟦ ⟧ ] 
cannot be simulated by V 
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Secure compilation

Weird machines

Hypothesis: 
Definitions match intuitions
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Exploit type return-oriented 
programming (ROP)

Source C

Compiler clang

Target assembly

Component complete C program

Context command-line input

Attack class command-line input

Behavior output traces
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Exploit type return-oriented 
programming (ROP)

Source C

Compiler clang

Target assembly

Component complete C program

Context command-line input

Attack class command-line input

Behavior output traces

Spectre 
(Patrignani and Guarnieri 2020)

non-speculative semantics

no-op

speculative semantics

program in memory

memory, cache, PC, etc...

prepare cache, invoke 
function, query cache...

timing information
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Secure compilation

Weird machines

Constructive procedure to answer:
Is A an exploit of V?



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation
Definition (Abate et al 2019)

A compiler satisfies robust hyper-property preservation (RHP) 
if,  source programs ∀ source programs V and  hyper-properties ∀ source programs H  ⊆ B:

(∀ source programs CS. Behavior(CS[V])  ∈ H) ⇒
(∀ source programs CT. Behavior(CT[ V⟦ ⟧])  ∈ H)

* approx: behaviors = sets of traces, so H is a set of (set of traces) 



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation
Definition (Abate et al 2019)

A compiler satisfies robust hyper-property preservation (RHP) 
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(∀ source programs CS. Behavior(CS[V])  ∈ H) ⇒
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Theorem (Abate et al 2019)

A compiler satisfies RHP iff  source programs ∀ source programs V:

∀ source programs CT, ∃CS . Behavior(CS [V]) = Behavior(CT[ V⟦ ⟧]).

* approx: behaviors = sets of traces, so H is a set of (set of traces) 



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation

∀ source programs CT, ∃CS . Behavior(CS [V]) = Behavior(CT[ V⟦ ⟧]).



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Robust Property Preservation

Definition

An exploit of a source programs V is a context A  ∈ A 
such that 

¬  ∃ CS . Behavior(CS [V]) = Behavior(CT[ V⟦ ⟧]).

∀ source programs CT, ∃CS . Behavior(CS [V]) = Behavior(CT[ V⟦ ⟧]).
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Robust Property Preservation
Definition

An exploit of a source program V is a context A  ∈ A 
such that 

∀ source programs CS . Behavior(CS [V]) ≠ Behavior(CT[ V⟦ ⟧]).
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Robust Property Preservation
Definition

An exploit of a source program V is a context A  ∈ A 
such that 

∀ source programs CS . Behavior(CS [V]) ≠ Behavior(CT[ V⟦ ⟧]).

Theorem

A is an exploit of V iff RHP is violated:
 ∃ hyper-property H  ⊆ B such that

(∀ source programs CS. Behavior(CS[V])  ∈ H)
but       Behavior(A[ V⟦ ⟧])  ∉ H)            
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Secure compilation

Weird machines

different security properties
= different attack classes



© 2015 Galois, Inc.‹#› © 2019 Galois, Inc.

Abate et al. 2019

Hierarchy of robust property 
preservation classes
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Hierarchy of exploit classes

identify a class of security properties of interest

identify property-free characterization

exploit class is negation of property-free 
characterization

1

2

3
Full 

abstraction?Full 

abstraction?

CFI?CFI?
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Trace Property Preservation
Definition

A trace exploit of a source program V is a context A  ∈ A such that

 ∃ t  Behavior(∈ A[⟦V⟧]).
 ∀ source programs CS, t  Behavior(∉ CS[V])  
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Trace Property Preservation
Definition

A trace exploit of a source program V is a context A  ∈ A such that

 ∃ t  Behavior(∈ A[⟦V⟧]).
 ∀ source programs CS, t  Behavior(∉ CS[V])  

Theorem

 trace exploits  hyperproperty exploits.⊆ 
 hyperproperty exploits  trace exploits ⊈ trace exploits 
         e.g. side-channel attacks
 Trace exploits “more programmable” than hyperproperty exploits.
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Secure compilation

Weird machines

 exploits compose 
through compiler stages
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Compositionality through 
compiler stages

Source language

Target language

V

Intermediate
language ⟦V⟧1

⟦⟧2

⟦⟧1

⟦⟦V⟧1⟧2
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such that
    ⟦⟧1 is correct for V; and
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then A is an exploit of V.
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Takeaways in the paper...

“Obvious” applications of secure compilation

  value in formalizing application strategy?

Non-traditional “programming languages” and “compilers”

  no-op compilers with different operational semantics

  source language as state machines

Trace-relating compilers

  source behaviors different from target behaviors

  behaviors need not be sets of traces

1

2
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Next steps...

Study counterexamples to secure compilation

  while trying to design a secure compiler

  determine programmability of exploits in design

  given an insecure compiler, help designing mitigations
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